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Abstract

With the advent of the trader rewards mechanism in August of 2021,
the dYdX Protocol has seen significantly increased exchange volumes and
revenues. While the initial rewards mechanism leads to much higher ex-
change revenues, it has a number of undesirable effects, such as incen-
tivizing inorganic late-epoch trading over early epoch trading and making
exchange revenues difficult to estimate. In this paper, we provide rea-
sons for why trading surges in the end of dYdX epochs, and we derive an
optimal strategy for maximizing trader rewards profits. We also provide
a survey of alternative trading rewards mechanisms, and we recommend
ways to improve the current mechanism to increase dYdX revenue and
make the mechanism more fair for all participants.

∗Disclosure: Reference to the DYDX price is necessary for this research. The authors do not
own DYDX token, nor are they affiliated with dYdX Trading Inc. or any of its subsidiaries.
This research was funded by the dYdX Grants DAO. Any opinions and results stated here
are those of the authors, not of dYdX, its subsidiaries, nor the dYdX Grants DAO. This is
not financial advice.
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1 Introduction

1.1 Research Motivation

Since the first epoch of dYdX rewards, there has been a meaningful increase
in fees paid near the end of the epoch. The most clear evidence of this is
the prevalence of wash trading as early as epoch 0; one trader traded over
$1.7B of volume through the COMP-USD perpetual market near the end of the
epoch, mostly between two accounts in order to avoid paying a spread. This
trader was not alone, as there were 80 other addresses that were also flagged
for wash trading. Due to the dYdX Foundation’s swift action to prohibit wash
trading addresses from receiving trading rewards, wash trading decreased in
future epochs. Still, the lesson is clear: incentivizing trading via the dYdX
rewards mechanism has a tangible impact on how traders participate in dYdX’s
markets.

Given the extreme ways that some traders behave near the end of the epochs,
we find it necessary to give a closer examination of dYdX’s trading rewards
mechanism. The primary goal of this research is to determine the extent to
which the current trader rewards mechanism meets its objective of rewarding
organic traders. To do this, we must first understand how the mechanism works
(section 1), how rewards-profit-maximizing traders would maximize their profits
(section 2), and how trading has unfolded historically (section 3). With that
understanding of the current trading rewards mechanism, we can then propose
ways to augment it to discourage inorganic order flow (section 4).

1.2 Mechanism Background

Recall the old formula for computing individual trader score:

w = fa × db (1)

r = R× w∑
i wi

, i = 1, 2, ...n (2)

where w, f , d, and r are an individual trader’s trader score, total fees paid,
average open interest, and reward for a given epoch with n total traders, re-
spectively. The constant R = 3, 835, 616 is the total amount of DYDX tokens
disbursed, and the exponents a = 0.7 and b = 0.3 are set through governance.

Let p denote the price of DYDX at the end of the epoch, and F⃗ = (f1, f2, . . . , fn)
denote a vector of fees paid by traders, where fk is the amount of fees paid by
trader k. Trader k’s profit in USDC at the end of the epoch is thus:

Pk(F⃗ ) = R× p× fa
k d

b
k∑n

i=1 f
0.7
i d0.3i

− fk (3)

Suppose traders are engaged in market-neutral strategies to maximize open
interest. For example, traders could hold equally-sized long and short positions
in the BTC-USDmarket in two separate trading accounts and periodically moving
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money between accounts to avoid liquidation. This entails some fees spent
throughout the epoch, but we assume those to be negligible. Clearly, any capital
spent in fees early in the epoch would be better used as collateral to maximize
open interest, as fees can always be paid towards the end of the epoch. Since
total trader score and DYDX price at the end of the epoch are also variable, and
better understood by traders near the end of the epoch, there is further incentive
for traders not to pay fees too early.

It follows that when traders start paying fees to maximize profits towards
the end of the epoch, their average open interest will be approximately constant;
this can also be observed empirically in previous epochs.

Thus, this rewards optimization problem can be reduced to an optimization
over a fee vector F⃗ = [f1, ..., fn], for a vector of profit functions P⃗ = [Pk]. That

is, each trader k maximizes their profit Pk(F⃗ ), with respect to their fees fk,
concurrently alongside all of the other traders.

2 Maximizing Profits on the Current Trader Re-
wards Mechanism

The goal of this section is to explore the impact of trading rewards on the be-
havior of profit-maximizing traders. We begin with a game-theoretic approach
for reward-maximization before the introduction of stkDYDX to the rewards for-
mula. Using Newton’s method we show that there exists a Nash equilibrium for
how much reward-maximizing traders should pay in fees, and then we approxi-
mate a closed form for this equilibrium that holds under certain conditions. We
examine how this equilibrium is affected by the number of traders n and the
distribution of their open interest D⃗. We then show this equilibrium is unique,
and examine how the introduction of stkDYDX impacts our solution. We con-
clude this section by exploring how some key assumptions we make may lead to
deviations from our proposed equilibrium.

2.1 Finding a Nash Equilibrium

Consider the following thought experiment. There are n traders who unfortu-
nately find themselves stuck in a room at the end of a dYdX trading epoch.
Their task is to determine how much they will pay in fees to maximize their
profits. They are told what the current total trader score is, and they know
their own average open interest. Traders are told to write down how much they
intend to pay in fees, and they repeat this for a number of rounds. During each
round, traders decide how much they should pay in fees and write that number
down. At the end of the round, they are told what the updated total trader
score is, given what everyone else decided to pay in fees. Then, during the next
round, they write down the updated fee amount that they want to pay, given
their updated expectation on total trader score. This goes on until no trader
changes the amount they write down. This resembles the problem faced by
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Figure 1: Profit function of trader k for constant F⃗

rewards-maximizing traders, and we will now show that for n rational agents,
this process necessarily converges.

Each trader is trying to maximize their profit function Pk(F⃗ ) illustrated
in figure 11. We can solve this optimization problem using a numerical root-
finding algorithm: Newton’s method. We want to solve for ∂

∂fk
Pk(F⃗ ) = 0 for

all k simultaneously. Newton’s method iteratively solves for fk that maximizes
Pk as follows. For a set of continuous, twice-differentiable functions Pk and an
initial starting point F⃗0, construct a sequence {F⃗i} such that:

F⃗i+1 = F⃗i −
P⃗ ′(F⃗i)

P⃗ ′′(F⃗i)
(4)

where P⃗ (F⃗ ) = [Pk(F⃗ )] is the vector of profit functions computed at F⃗ . To

show that the vector F⃗ converges, the Newton updates must be computed in
parallel for all traders at each round as denoted in the vector calculus notation
above. Denote D⃗ = [dk] as the open interest vector which we argued is constant
at the end of the epoch, and D as the total open interest (D =

∑
k dk). The

pseudocode for our algorithm is in algorithm 1. We implement Newton’s method

1The source code for all of the plots is in the analysis.py file in this repository.
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in Python3 using Sympy to solve for the derivatives of Pk. For further details
on our implementation please refer to this repository.

Algorithm 1 Profit Maximization Algorithm

Require: n ≥ 0
Require: p ≥ 0
Require: α ∈ [0, 1] ▷ Learning rate to ensure convergence
Require: R = 3, 835, 616
Ensure: P ′(fk) = 0,∀k ∈ [0, n]

1: D⃗
iid∼ {Dirichlet[[1]× n, 1]} ▷ Randomly distribute open interest

2: F⃗
iid∼ {U [0, 1]× D

n } ▷ Randomly set initial guesses for fees
3: r ← Inf ▷ Distance between successive fees vectors
4: while r ≥ 10−2 do
5: T ← D⃗ · F⃗ ▷ Compute current market score
6: F⃗new ← F⃗
7: for k ∈ [0, n] do

8: F⃗new[k]← F⃗ [k]− α× P ′
k(F⃗ [k])

P ′′
k (F⃗ [k])

9: end for
10: r ← dist(F⃗new, F ) ▷ Compute root-mean-squared error

11: F⃗new ← F⃗
12: end while

We run our algorithm multiple times for different values of n and note that
our fees vector always converges to an optimal fees vector F⃗ ∗. We now argue
that this is indeed a Nash equilibrium.

One could prove this is a Cournot-Nash equilibrium by solving for fk in
P ′
k(fk) and plugging that solution into all fi in P ′

k(fk) to show that the optimal
fk does not change. That is, if trader k chooses to pay fees according to the
output of Newton’s method, and then finds out that all other traders are using
the same strategy, trader k will have no incentive to change the amount of fees
paid. However, solving P ′

k(fk) analytically would prove troublesome:

d

dfk
Pk(fk) =

55309582.72d0.3

f0.3(T + d0.3f0.7)
− 55309582.72d0.6f0.4

(T + d0.3f0.7)2
− 1. (5)

We can instead take a numerical and graphical approach to show why this
is a Nash equilibrium. Using Sympy we can verify that P ′

k(fk) = 0,∀k for
any run of our algorithm. That is, trader k is maximizing her profits and has
no incentive to change her strategy. More formally: the algorithm converging
implies all traders are maximizing their profit functions, and therefore are at
a local equilibrium. For all runs of our algorithm, we verify the derivative of
any trader’s profit is 0 at our steady state solution F⃗ ∗ to ensure trader’s are
maximizing their profit functions. Again, for implementation details, please
refer to our GitHub repository.
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We can build some intuition on the shape of Pk(fk) by referring to figure

1, where the fees vector F⃗ is held constant except for fk. By verifying that
P ′
k(fk) = 0,∀k we ensure that every trader finds themselves at the peak of their

profit curve, and would not benefit from any change in the amount of fees paid.
Furthermore, all profit functions are concave down, which will later help us
argue that this is a unique Nash equilibrium.

Notice that according to Newton’s method with or a sufficiently small learn-
ing rate α, our algorithm converges if and only if there is no incentive for any
trader to diverge from their current strategy. This is a consequence of each profit
curve being concave and twice differentiable. The algorithm does converge. So
there is no incentive for any trader to diverge from this strategy, even if all other
traders are also using this strategy. Therefore this is a Nash equilibrium.

2.2 Computing a Closed Form Solution

We ran the profit-maximizing algorithm many times for different numbers of
traders n. For large values, n > 1000, we noticed a very clear pattern: the ratio
dk : fk was the same for all traders. In fact, upon closer inspection we verified
that the ratio of fees to open interest was:

fk
dk

=
0.7Rp

D
(6)

Notice that it seems the amount that a trader should pay in fees is indepen-
dent of the distribution of D⃗ and the total trader score. Trader k can compute
the optimal amount to pay in fees without worrying about predicting where
total trader score will be at the end of the epoch or how open interest is dis-
tributed between traders. Furthermore, it follows that the sum of fees paid in
a given epoch for large n can be approximated as:

n∑
k=1

fk =

n∑
k=1

0.7Rpdk
D

= 0.7Rp

∑
n dk
D

= 0.7Rp.

(7)

meaning dYdX’s revenue from trading rewards is linear in the exponent a
as well as the price of DYDX, p.

However, when we run our simulations for smaller values of n, this linear
relationship between dk and fk vanishes. We observe these differences in figure
2. Notice that when there are only 2 traders they converge to paying the same
amount in fees regardless of their share of open interest.

While dYdX rewards have historically attracted thousands of eligible traders,
it is important to notice this peculiar behaviour at smaller n. As n increases
the relationship between dk and fk becomes more linear, but we argue that this
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is not directly due to n increasing but rather due to the distribution of open
interest in the market.

Figure 2: Distribution of fees to open interest for varying n

2.2.1 Distribution of Open Interest

So far we have presented our algorithm using a flat Dirichlet distribution to
allocate open interest in our simulations. A Dirichlet distribution allows us to
distribute an exact quantity, D, amongst n traders while controlling the weight,
αk, of each trader dk, which we set to αk = 1 for all traders.

However, the irregular behavior observed for small n prompted us to modify
our algorithm to account for whales in the market, i.e. those with dispropor-
tionately large average open interest. Recall the probability density function of
the Dirichlet distribution: for n points sampled from Dir(x1, ..., xn;α1, ..., αn)
the pdf is:

1

B(α⃗)

n∏
i=1

xαi−1
i (8)

where B(α⃗) is the multivariate beta function, a normalizing constant2. A
flat Dirichlet distribution where α0 = α1 = ... = 1 gives equal weight to all
traders, such that for large n, no traders are expected to account for a large
share of open interest. When we have small n, such as n = 2, each trader
accounts for a very large share of open interest, and therefore can significantly
affect the total trader score by paying more or less in fees.

To simulate this effect we can instead provide very large values of αi for a
small number of traders, such that their share of open interest is much larger.

2https://en.wikipedia.org/wiki/Beta function
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Figure 3: Error of closed form solution fk = 0.7Rpdk

D with and without whales.
Whales correspond to the ten points on the lower right corner of the right-hand
plot.

This better reflects the actual distribution of open interest, where some ad-
dresses account for upwards of 3% of open interest, and some of these accounts
are likely held by the same trader/firm. We will refer to the select traders with
disproportionately large shares of open interest as “whales”. For the remainder
of this section we will be exploring results for simulations with 10 whales of vary-
ing sizes. We choose to simulate 10 whales based on historical data presented
in dYdX’s trader rewards dashboard.

When we account for this uneven distribution in our algorithm, we notice
that as the open interest of a particular trader becomes much larger than the
mean, and therefore changes in their fees paid significantly impact the overall
trader score, their optimal fees paid decreases relative to equation (6). We
can observe this pattern in figure 3, which displays the difference between our
hypothesized closed form fk = 0.7Rpdk

D and the actual equilibrium found by
Newton’s method. Notice that without whales most traders can safely pay
according to our closed form solution. However when we inflate the open interest
of 10 traders this is no longer the case; if they followed the closed-form, the
majority of traders will be underpaying in fees, whereas the whales will be
overpaying relative to the optimal fees vector found by a run of our algorithm.
That is to say, Newton’s method converges to a Nash equilibrium, and the
proposed closed-form is merely an approximation that does not hold true when
we take market whales into account.

Interestingly, the existence and size of whales affect the expected sum of fees
paid in any particular epoch. In figure 4 we notice that as the weight of the 10
whales increases, the total sum paid in fees decreases. The red line indicates
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Figure 4: Sum of fees for varying whale sizes. The red line is 0.7Rp. Recall that
α is the weight parameter for traders in the Dirichlet distribution, meaning a
larger α creates larger whales. Simulations use p = $10 and D = 1, 500, 000, 000.

the expected sum 0.7Rp where p was arbitrarily set to $10.
Furthermore, we can show the advantage whales have over smaller traders

in maximizing profits per amount spent in fees. Traders holding a greater share
of open interest will generate more profit per dollar spent in fees, as displayed
in figure 5. Notice that non-whales will profit around 43% off the amount spent
in fees, whereas whales profit close to 50%.
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Figure 5: Profit over fees for whales vs non-whales. Whales correspond to the
ten points on the upper right corner of the right-hand plot.

2.2.2 Aside on Price Sensitivity

We can briefly examine the price sensitivity of our algorithm in terms of total
fees paid. We run Newton’s method with D = 150, 000, 000 and 10 whales
at α = 100 at varying prices. Results are shown in figure 6 and indicate the
expected revenue from the trading rewards program.

2.2.3 Aside on Trader Profits

Figure 5 shows the profits that traders currently receive by employing this strat-
egy, before considering slippage. We see that whales make more than smaller
traders, however these results yield quite an interesting result: even smaller
traders stand to profit upwards of 43% on fees spent (before slippage).

Although accounting for slippage is difficult for whales, we can show that it
is negligible for smaller traders. It is common to see spreads on dYdX’s BTC-USD
market as low as $1 (0.0023%), with a notional size on the best offer of over
$40,000. For small traders who space out their trades, they may be able to
enjoy slippage that is negligible compared to the trading fee paid to dYdX, thus
making 40+% returns per fee spend viable in reality.

We also do not take into account exchange deposit and withdrawal fees,
which may cost a non-negligible amount for small traders. If the trader’s strat-
egy requires frequent deposits or withdrawals, then this can quickly eat into
their profits. Nevertheless, since this component of the trader’s profits depend
on their strategy, we cannot speak to precisely how much a trader will need to
pay in ethereum gas fees.

It is important to note that returns per fee spend is not the same as return on
investment. For a trader with average leverage ratio l, their return on investment
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is approximated by the following:

roi =
.7Rprf l

D
, (9)

where roi is the return on equity allocated to the dYdX platform, l is their
average leverage ratio, and rf is the return per fees (rf ≈ 0.4); see appendix for
the derivation. When p = $5.5 and D = 1, 500, 000, 000, l = 10, and rf = 0.43,
we see that the trader’s return on investment is 4.2% per epoch, or 64% per
year.

Figure 6: Sum of fees paid according to Nash Equilibrium for varying DYDX
token prices. The red line indicates the expected sum of fees paid according to
our closed form 0.7Rp.

2.3 Uniqueness

We can intuit that our pure-strategy Nash equilibrium is unique. Given that
all traders have similar concave profit function, it would be unexpected for
there to exist multiple Nash equilibria. In fact, we have already developed
some reasoning for why our solution is unique when constructing our Newton’s
method algorithm; we begin at an arbitrary, randomly sampled fee vector and
it always converges to the same ratio of fees to open interest. If there existed
multiple equilibria, we would expect a different convergence pattern on at least
one run of our algorithm.

However, we can be a little more robust with our uniqueness proof using fixed
point theorems from the mathematical field of real analysis. We reproduce our
uniqueness proof in the appendix. The key takeaway is that our proposed Nash
equilibrium is unique, and therefore we expect traders trying to maximize their
profit from the rewards program to pay fees according to our optimal fees vector
F⃗ ∗.
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2.4 Takeaways

Let’s summarize our conclusions on trader behaviour before the introduction of
stkDYDX:

1. Traders will try to pay most of their fees at the end of the epoch.

2. For n profit-maximizing traders with total open interest D, there exists a
Nash equilibrium for the fees paid, F⃗ ∗, where no trader has an incentive
to increase or decrease their amount of fees paid.

3. F⃗ ∗ is unique.

4. For a flat Dirichlet distribution of open interest, F⃗ ∗ can be approximated
by a closed-form equation fk

dk
= aRp

D for all traders k, and dYdX revenue
from fees scales linearly with a and p. Recall that a = 0.7

5. However, this closed form overestimates fees paid by big traders, and
underestimates for small traders depending on the distribution of open
interest. Large whales holding significant shares of the total open interest
introduce an error in our closed form that can be explored by running
Newton’s method with varying whale sizes.

6. Markets with large whales will pay a smaller sum in fees compared to
markets where open interest is more evenly distributed. For example, at
a DYDX token price p = $10 and total open interest D = 1, 500, 000, 000,
an even distribution of open interest will yield approximately $1M more
in fees than if there was the same total interest, but with whales of weight
αk = 10, 000.

7. Traders with a larger share of open interest (i.e. whales) have a higher
ROI compared to smaller traders.

2.5 Introducing the Safety Module

We have shown that there exists a unique pure-strategy Nash equilibrium for
the rewards profit maximization problem. Furthermore, we have shown how
rational agents can find this optimal strategy, and how they should compute
the optimal fees they must pay. We will now analyze how introducing stkDYDX

to the Cobb-Douglas reward function will impact how traders choose to pay
their fees. The new trader score function is:

w = fa × db × [max(10, g)]c (10)

where g is a trader’s average stkDYDX held, and c = 0.05. Notice that we
have previously split a trader’s strategy into two phases. Phase (1) occurs at
the beginning of the epoch when traders decide how they will maximize their
open interest via, say, highly leveraged market neutral strategies. In phase (2)
traders decide how much to pay in fees. We made this distinction because there
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is no incentive for traders to pay fees before the very end of the epoch, and it
is clear that introducing stkDYDX does not change this fact. The introduction
of stkDYDX only changes how traders will compute the amount to pay in fees at
the end of the epoch.

2.5.1 Finding a Nash Equilibrium with stkDYDX

In order to simulate a Nash equilibrium with stkDYDX we must decide how and
how much stkDYDX to distribute among traders. We show how traders could
optimally decide on how much stkDYDX to hold within the rewards ecosystem
in the appendix. However, the current state of the DYDX safety staking pool
does not demonstrate the same optimization behavior as the rewards mecha-
nism, as there are much fewer stakers than traders (2,700 stakers, according to
Etherscan), and not all of those stakers are large traders on the protocol.

We instead distribute the total amount of stkDYDX, G, similarly to how we
distributed total average open interest D, except we establish a floor for each
individual gk at gk = 10 in accordance with the rewards function. We find that
our algorithm still converges to an optimal fees vector F⃗ ∗.

Therefore, if we can arrive at an adequate estimate for the total stkDYDX,
G, then we can approximate the optimal fees vector using our algorithm. Fur-
thermore, we argue that the impact of stkDYDX on the Nash equilibrium from
previous sections is minimal; the exponent on stkDYDX is very small and few
traders hold significant amounts in stkDYDX. Therefore, we postulate that an
adequate approximation of G will lead to surprisingly accurate approximations
of the optimal fees vector F⃗ ∗.

To approximate G we use the dYdX API to get the average stkDYDX held in
an epoch and multiply by the number of eligible traders in said epoch. We find
that total average stkDYDX is in the order of tens of millions, and we explore the
sensitivity of our Nash equilibrium for varying G in figure 7. Notice that our
x-axis is d0.28k g0.05k to capture the relationship between dk and gk in the rewards
function. We argue that rough approximations of G are sufficient for small
traders, but for larger traders, small fluctuations in G might have significant
impacts on the optimal amount to pay in fees. We argue this sensitivity to G
is small due to its relatively small exponent c = 0.05.

2.6 Assumptions

1. All traders are trying to maximize profits from rewards. This assumption
that our model makes is obviously false. However, our model is mostly
used as a means to estimate the optimal fees a trader should pay near
the end of an epoch, and it accounts for the amount of fees already paid
throughout the epoch. Thus, we would expect the true trader score to
be lower in practice than what is derived by our mechanism, since not all
traders near the end of the epoch are optimizing for their rewards.

2. All traders agree on a DYDX price p. When rewards-profit maximizing
traders pay x USDC in fees in order to receive an estimated y of DYDX
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Figure 7: Fees distribution for varying G. Whales correspond to the thirty
points on the upper right corner of the plot.

in end of epoch rewards, this is equivalent to locking x USDC into a
collateral account and going long an estimated y of DYDX futures contracts,
with expiry of one week after the epoch end. We assume that traders
mark this virtual futures contracts to the DYDX price at the end of the
epoch. However, since the reward quantity y and end-of-epoch DYDX price
is difficult to estimate throughout the epoch, risk-averse traders would
shade their fee payments lower. Even near the end of the epoch, when y
and DYDX price are easier to estimate, there is still (at the time of writing)
a negative perpetual funding rate for DYDX; when perpetuals sell at a
discount, we expect that the virtual DYDX futures will also trade at a
discount. Thus, we have reason to believe that the agreed-upon DYDX

price used in our model is an over-estimate, and that the observed total
trader score will be lower in practice.

3. All traders are market neutral on DYDX or have means to short DYDX.
This assumption, is related to assumption (2), and it is an unrealistic
assumption. If not all traders can short DYDX, then risk-averse traders
will be less willing to pay fees, whereas speculative traders may be willing
to pay more in fees than the current DYDX price would warrant. This
assumption is critical to understanding historical epoch data.

3 Comparison to Historical dYdX Data

We now compare our optimal-fees algorithm with historical dYdX data. We use
dYdX’s HTTP API to obtain data on stkDYDX; we use dYdX’s trader rewards
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dashboards to find the total number of eligible traders and the total trader score;
and we use dYdX epoch reviews to get data on fees paid. Using this data and
the closing price p of DYDX token the day before the end of each epoch, we run
our simulations to compute optimal fees for traders. The data from the dYdX
API call is processed in our public code repository, and it can be found in figure
8.

We generate 10 market whales each with weight α = 100 and run our algo-
rithm. Notice that epoch 0 occurred before the implementation of the rewards
mechanism so our analysis only applies to epochs 1-7. The historical data we
gathered along with our algorithm’s predictions are displayed in table 1.

epoch fees openInterest stakedDYDX numTraders totalTraderScore close

1 33900000.0 170293617.912 0.0 9979 64760847 20.972
2 64000000.0 196342688.532 0.0 11175 156288754 18.849
3 55000000.0 200980039.716 0.0 8502 136583326 14.181
4 39000000.0 175289739.45 0.0 6448 91997522 7.398
5 24000000.0 164673930.09 20574299.548 4876 56500160 7.415
6 17000000.0 127578968.971 25490720.0 5008 44815330 7.436
7 15000000.0 109582046.721 36520010.0 5347 40647086 4.534

Table 1: Historical trading rewards data.

Our results are displayed in figure 10. Furthermore, the expected versus
actual profits can be computed using the total trader score for each trader in
each simulation. To explore these, refer to the utils.py file in our repository.

3.1 Discussion

We begin with figure 10, which compares the ‘predicted’ optimal fees from our
algorithm vs. the ‘actual’ observed fees paid by dYdX traders. This graph is
by-and-large the most important to understand, as it can be used as a tool for
evaluating the merit of our prior game theoretical analysis.

What we observe are two distinct periods: (1) epochs 1-4, and (2) epochs
5-7. We handle each period separately, explaining why these results appear.

In the first period, we observe that the total fees paid massively outpaced the
amount of fees expected in epochs 1-4. In the first epoch, we see that the total
sum of fees paid is less than the predicted sum of fees paid; this likely arises due
to the fact that calculating an optimal amount of fees paid is nontrivial (it took
us a month!). In epochs 2-4, we observe a massive over-correction in the total
amount of fees paid; this could be for a number of reasons, such as anticipating
that most other traders are not optimizing for rewards, or just typical platform
demand manifesting in exchange order flow. However, what we find most likely
is that traders opened positions with large open interest in order to maximize
rewards, and in the process of maintaining these leveraged positions, they over-
spent fees throughout the epoch due to DYDX’s price decline by the end of the
epoch. For reference, observe figure 9, which plots dYdX exchange’s volume vs.
DYDX price. This figure demonstrates, on a log-scale, the price evolution of the

17

http://metabase-1818188965.us-east-1.elb.amazonaws.com/public/dashboard/b3e36e1f-6860-4ecb-8f8b-96ca727f4609
http://metabase-1818188965.us-east-1.elb.amazonaws.com/public/dashboard/b3e36e1f-6860-4ecb-8f8b-96ca727f4609
http://metabase-1818188965.us-east-1.elb.amazonaws.com/public/dashboard/b3e36e1f-6860-4ecb-8f8b-96ca727f4609
https://github.com/xenophonlabs/dydx-trader-rewards/blob/main/trading_mechanisms/historical_data.ipynb


Figure 8: Historical trading rewards data.
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Figure 9: Historical dYdX exchange trading volume and DYDX price.

Figure 10: Comparison between actual sum of fees paid and predicted sum of
fees paid.
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DYDX token throughout the epochs. Recall that in order for traders to maximize
their rewards, they must maintain leveraged positions in order to heighten their
open interest. The higher the leverage, the more often traders must rebalance
their portfolios to avoid liquidation. The more traders rebalance, the more fees
they pay throughout the epoch. It is quite likely that risk-neutral traders who
valued DYDX rewards at a higher price in the beginning of the epoch than the
price received at the end of the epoch would surpass their optimal amount of
fees paid throughout the epoch by rebalancing their portfolio too often. This
behavior would explain why the observed fees paid in epochs 2, 3, and 4 were
higher than that predicted by our algorithm, since our algorithm computes
optimal fees paid based on the price of DYDX at the end of each epoch. Traders
should thus be cautious when applying our algorithm at the end of an epoch if
the DYDX price has dropped since the epoch’s beginning; if the price decreased
over the epoch, they should pay less in fees than our algorithm suggests.

In the second period, namely epochs 5-7, we see that traders’ observed total
fees paid closely reflects the amount of fees predicted by our algorithm. For
the same reason that traders overpaid in fees in previous epochs, we see that
traders paid nearly the right amount in epochs 5-7. Take from table 1 the price
of DYDX at the end of epochs 4, 5, and 6: $7.398, $7.415, $7.436. These prices are
all very near each other, which means that rewards-optimizing traders’ optimal
open interest calculation in the beginning of the epoch was roughly correct, and
thus they were able to pay nearly the optimal amount in fees over the entire
epoch. This helps to explain why epochs 5 and 6 had a sum of fees paid nearly
identical to our algorithm’s computed optimal fee spend. In epoch 7, the DYDX

price dropped 40%, and this manifested in a fairly large over-payment in fees
for that epoch, where traders paid roughly 22% more than the optimal amount
in fees.

Overall, we see that for the small number of epochs where trader rewards
were offered, our optimal-fee calculating algorithm gives results resoundingly
close to the amount of fees observed by traders in epochs where the DYDX price
is close near the beginning and end. In epochs where the total observed fees are
higher than what our algorithm predicts, this is consistently accompanied by a
decaying DYDX price.

It must be noted that due to the limited number of data points present, we
do not claim that our results are statistically significant. Given the fact that
we only observed seven data points, it possible that our results are the product
of coincidence. However, given this small amount of data on previous epochs,
we believe that a majority of trading volume can be eloquently explained by a
model composed entirely of rewards-profit-maximizing traders.
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4 Survey of Alternative Trader Reward Mecha-
nisms

In this section, we analyze a number of alternative trading rewards mechanisms,
giving the benefits and drawbacks of each. Mechanism 0 is an exploration of
improving parameters within the existing mechanism, whereas Mechanisms 1-3
are examples of mechanisms that would replace the current mechanism entirely
if they were implemented. Furthermore, we analyze a pre-epoch sale into stable
coins, which can be used to augment and improve any of the rewards mechanisms
listed here. We conclude with suggestions for changes to be made to the dYdX
rewards parameters.

4.1 Mechanism 0: Existing Mechanism, with Different
Parameters

4.1.1 Overview

Although this paper was motivated by observations of atypical trading behavior
related to the rewards mechanism, it is still only fair that we share the merits
of the original mechanism as well. As such, in this section we enumerate the
current parameters of the dYdX rewards mechanism, we give suggestions for how
they could be changed to further dYdX’s objectives, and we give the benefits
and drawbacks of the current mechanism with these updated parameters.

4.1.2 Analysis of Current Trader Rewards Parameters

The dYdX trader rewards mechanism currently has the following rewards pa-
rameters.

1. R = 3, 835, 616: The total reward, denominated in dYdX token, to be
distributed at the end of each epoch.

2. a = 0.67: The weight in the rewards formula associated with a trader’s
fees paid.

3. b = 0.28: The weight in the rewards formula associated with a trader’s
average open interest.

4. c = 0.05: The weight in the rewards formula associated with a trader’s
quantity of stkDYDX.

5. T = 28: The number of days in a trading rewards epoch.

We proceed sequentially, giving suggestions for if and how each of these
parameters should be updated.

Parameter R. The current rewards amount is substantial. Our paper finds
evidence that the amount of value of rewards, Rp, is roughly linearly correlated
with the amount of expected fee revenue for the exchange. Therefore, if the
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exchange wants to bootstrap short-term revenue, it can achieve that end by
increasing token rewards. However, changing the token distribution would affect
the tokenomics for the protocol, which warrants more research than what was
provided here. We do not give any recommendations for a change in the R
parameter.

Parameter a. The current a parameter composes the greater part of the
current rewards formula weighting. As we found in section 2, the total amount
of fees paid to the exchange is roughly linear in the a parameter (i.e.

∑
k fk ≈

αa, for some value α). Therefore, increasing the a parameter by 10%, for
example, would increase the expected fees by approximately 10%. Considering
the substantial amount of fees generated by the dYdX protocol already, a 10%
increase in fees paid in the past month would have resulted in $1.5M of marginal
revenue.

The only problem with raising the a parameter is that we must then lower
either the b or c parameters. We now argue that it would be acceptable to lower
the b parameter without causing meaningful change to the dYdX protocol.

Parameter b. The b parameter in the dYdX trader rewards formula is
meant to incentivize long term growth of the protocol. Upon the implementation
of the trader rewards mechanism, we see that open interest jumped nearly a full
order of magnitude higher than its point before the rewards (see figure 11).
Here, we argue that the b parameter can be decreased, for two reasons: (1) we
demonstrate evidence in section 2 that the dYdX trader rewards mechanism
has not inspired substantive growth in long-term users, and (2) open interest is
correlated, but remains quite high even when the dollar value of trader rewards
decreases. Despite the value of rewards dropping to a fifth of its all-time high,
open interest remains high. This gives some, albeit not perfect, evidence that
open interest would remain high even if it had less weight in the rewards formula.
However we do not have a model to quantify how much we expect open interest
to drop as a result of decreasing the b parameter.

Even if open interest were to decrease after decreasing the b parameter, we
still must ask: why is this a bad thing? Open interest does not contribute to
protocol revenues; favoring open interest means the exchange incentivizes high-
leverage, long-duration trades, which have a higher likelihood of liquidation
than lower average leverage trades; favoring open interest makes it more difficult
for rewards-profit maximizing traders to maximize rewards, and thus decreases
protocol revenues; and there is no clear relationship between long-term user
growth and the incentivization of open interest. Of course, it would be unfair
to say that open interest is a useless metric to incentivize. High open interest
on the exchange indicates that traders are increasing their position sizes on the
platform, which is an important sign of protocol growth. High open interest
demonstrates that dYdX is a place where legitimate traders transact.

All things considered, we find that the protocol would see increased revenue
by increasing its a parameter, and in order to preserve the sum-to-1 Cobb-
Douglas function, we propose that the increase in a come at the expense of the
parameter b. In particular, we propose increasing the a parameter to a = 0.8
and decreasing the b parameter to b = 0.15. We expect that this will result in
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Figure 11: Historical dYdX exchange open interest and DYDX price. Open in-
terest is correlated, however its magnitude of change is much more resilient to
changes in DYDX price.

two changes: first, it will increase the dYdX exchange revenue by roughly 20%
(i.e. 0.8/0.67) due to the approximately linear relationship between a and total
fees paid, and second, it will increase the dYdX exchange revenue by making it
less difficult for traders to optimize their rewards. For epoch 7, we believe this
change would have the effect of a $3.2M+ increase in epoch revenue, and for
even higher-fees-paid epochs, such as epoch 2, this change would have had the
effect of a $13M+ increase in epoch revenue.
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Parameter c. The safety staking module weight, c, has the effect of incen-
tivizing deposits into the safety staking module. It was added just before epoch
5 (see the commonwealth post) as a way to convert short-term traders into long-
term dYdX holders. Currently the stkDYDX term plays a relatively insignificant
role in trader rewards, and we see no reason to increase it, due to the fact that it
already holds approximately 30M DYDX, according to Etherscan. Further com-
mentary on the staking module is beyond the scope of this paper, however we
currently assume that these reserves with a current USD value north of $150M
are sufficiently large and do not require further incentivization. However, we
leave it to future research to further optimize the c parameter.

Parameter T . The epoch length parameter has significance not only to the
trader rewards mechanism, but also to other modules in the dYdX ecosystem,
such as time locks on safety and liquidity staking modules, as well as liquidity
provider rewards. Since the scope of this paper is limited to the trader rewards
mechanism, we do not consider the downstream effect that changing the epoch
length parameter would have on the rest of the dYdX ecosystem. For this reason,
we do not give a recommendation for changing the current epoch length.

4.1.3 Mechanism Properties

1. Drawback: As shown in section 2, this mechanism incentivizes inorganic
trading near the end of the epoch.

2. Benefit: This mechanism is reasonably straightforward if traders know
the optimal amount to pay in fees. They need only pay excess fees at
one point in the epoch, making it quite accessible for anyone to attempt
profit-maximizing behavior for trading rewards. This makes the trading
rewards mechanism relatively fair and accessible. Furthermore, since the
rewards mechanism is more accessible, this also contributes to increases
in dYdX trading revenues.

3. Benefit: This mechanism has been shown to work quite well historically,
as it has clearly attracted significantly more exchange volume and open
interest. By keeping the same rewards mechanism, there is also less need
for existing rewards-profit-maximizing traders to modify their optimiza-
tion algorithms.

4.2 Mechanism 1: Median of Smaller Trading Intervals

4.2.1 Overview

This mechanism is almost identical to the current trading rewards mechanism,
except an individual trader’s fee term f is defined as the median fees paid over
smaller trading intervals throughout the epoch, rather than the sum of all fees
paid throughout the epoch.

Formally, let d be an interval length (e.g. d =1 hour), and let fi be the
amount of fees paid by a trader on the time interval (id, (i + 1)d). Then the
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new rewards formula would let the fee term for that trader be

f = mediani∈{1,2,...,T/d}(fi).

This fee term would be used to compute a trader’s score according to the
same current trader score formula, namely

w = fa × db × [Max(10, g)]
c
,

where w is the trader’s trader score, f is fees, a is fee weight (currently 0.67), d
is open interest, b is open interest weight (currently 0.28), g is stkDYDX, and c
is staked DYDX weight.

4.2.2 Mechanism Properties

1. Benefit: This mechanism makes it easier for the dYdX Protocol to es-
timate trading revenues, since traders will ramp up fee payments more
frequently instead of just once per 28 days.

2. Benefit: The engineering work required to implement this solution is mini-
mal, as it only requires computing traders’ scores in each of the pre-defined
intervals.

3. Drawback: This mechanism requires significant trader up time in order for
traders to get any rewards at all. If a trader pays fees in fewer than T

2d
intervals, they will thus have 0 trader rewards. If d =1 hour, then under
this formula, traders must pay fees in at least 672/2 = 336 of the hour-long
intervals throughout the epoch in order to get any rewards. Alternatively,
if d =1 day, then under this formula, traders must pay fees in at least
14 of the day-long intervals throughout the epoch in order to get any
rewards. A small value for d makes it impossible for infrequent traders to
get rewards. A large value for d leads to the same mechanism failure as
the current mechanism. For instance, if d =7 days, then traders must still
pay fees in at least two intervals to get rewards, yet they can still perform
the same end-of-epoch behavior observed today on the smaller intervals,
where each week we would expect to see a large ramp up in volume.

4. Drawback: Since this mechanism is so taxing on rewards-profit-maximizing
traders, it will likely lead to fewer traders optimizing their rewards, and
thus lead to lower exchange revenues.

Due to its drawbacks with respect to inaccessible rewards maximization, we
find that this mechanism is not a suitable replacement for the current rewards
mechanism.

4.3 Mechanism 2: Shorter Epochs Mechanism

4.3.1 Overview

This mechanism is also quite similar to the current mechanism, except with
a changed epoch length parameter T . If taken to the extreme, epochs could
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be very short (e.g. 100 milliseconds), giving traders an incentive to spend fees
throughout the epoch, rather than all at the end.

4.3.2 Mechanism Properties

1. Benefit: This mechanism makes it easier for the dYdX Protocol to es-
timate trading revenues, since traders will ramp up fee payments more
frequently instead of just once per 28 days.

2. Drawback: There are multiple modules in the dYdX governance stack
that use the epoch variable (e.g. liquid staking module, safety staking
module, governance time locks). Changing the epoch length is not a trivial
change engineering-wise, and it may also have downstream effects on other
mechanisms that use the epoch parameter.

3. Drawback: This shifts the inorganic volume from occurring in a large
way at the end of each 28 day epoch to occurring in a small way at the
end of each smaller epoch. This mechanism still does not deter inorganic
volume, and in fact as the epoch length gets smaller, the rewards received
by infrequent traders also gets smaller. This also means that market
makers, who currently need only modify their algorithms near the end of
the 28 day dYdX trading epoch, would need to modify their algorithms
at the end of each smaller epoch.

Due to the engineering lift necessary to implement this mechanism, as well as its
dubious benefits to the inorganic late epoch trading phenomenon, we find that
this mechanism is not a suitable replacement for the current rewards mechanism.

4.4 Mechanism 3: Mini-Intervals Mechanism

4.4.1 Overview

This mechanism is similar to the current mechanism, with two additions: (1)
it distinguishes between epochs and what we call “trading intervals” where
traders earn rewards, and (2) it does not disclose the start/end time of trading
intervals until after the epoch has completed. We show here that by adding
these components to the current trader rewards mechanism, the exchange can
incentivize nearly constant-rate trading volume across the epoch with no impact
to overall epoch open interest. This makes it harder for rewards-maximizing
trader to optimize their rewards, which has benefits and drawbacks discussed
in the “Mechanism Properties” section.

First, we describe how this mechanism distinguishes an “epoch” from a
“trading interval”. The epoch length is a parameter in dYdX governance smart
contracts on which a large amount of behavior depends. Safety staking and
liquidity provider rewards also depend on this parameter for their own mecha-
nism. Thus, changing the epoch length has effects on other parts of the dYdX
ecosystem. However, there is no requirement that rewards be calculated on an
epoch basis. Here we introduce trading intervals, which we define as intervals
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of time within an epoch on which trader rewards are calculated. With this
abstraction, we can construct a new mechanism where the total trader rewards
given (currently R = 3, 835, 616 DYDX per epoch) are split among n equal-sized
intervals within the epoch, where n is known by traders before the epoch. In-
stead of allocating R DYDX to the traders for their cumulative trading across
the entire epoch, we may for instance allocate R/n DYDX to traders for their
trading in each trading interval in the epoch. While R/n of the rewards would
be earmarked for each trading interval at the beginning of the epoch, traders
will still only be allowed to claim their rewards at the end of the epoch, as is
done with the current mechanism.

But how do we determine which intervals should be trading intervals?
The naive approach would be to do the following: let the interval length be

d = T/n, where T is the length of the entire epoch, and then make the following
intervals:

I = [(0, d], (d, 2d], . . . , (T − d, T ]].

In this approach, R
n would be allocated for trading in each interval. Although

this mechanism would certainly incentivize more steady trading throughout the
entire epoch, it would still suffer from rewards-profit-maximizing traders placing
trades near the end of each trading interval. In other words, it would take the
current end-of-epoch trading problem and spread it across n intervals, but it
would not resolve the fundamental issue where rewards-maximizing traders wait
until the end of the trading interval to pay fees. This is the problem we observed
with “Mechanism 1”.

But what if traders did not know when the end of each trading interval was?
Consider a similar approach to the naive one above, except for the following
adjustment: let r be a uniform random variable sampled from (0, d], and let the
trading intervals be

I = [(r, r+d], (r+d, r+2d], . . . , (T−2d+r, T−d+r], (T−d+r mod T, T+r mod T ]].

There are a few noteworthy items worth discussing in this change. First, the
value of r must be unknown to traders before the epoch is over, at which point it
can be generated via smart contract using a random oracle, such as Chainlink’s
Verifiable Random Function. Second, the last interval has a peculiar “ mod ”
term in it. This is because technically the “last” interval is partially at the
end of the epoch (time T − d + r to time T ), and partially at the beginning
of the epoch (time 0 to time r). This single wrap-around interval has less
semantic interpretability, however it does not affect the nice properties of the
mechanism, and it provides a way to include the first (0, r] length of the epoch
into the trading rewards. For the visually inclined, the epoch endings can be
thought of as tick marks on a clock, and r can be thought of as an angle of
rotation applied to the clock.

Using this mechanism, we are able to prove that if the DYDX markets are
efficient (i.e. expected price of DYDX at any point in the epoch is simply the
current price of DYDX), then the expected cumulative USD nominal value of
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rewards allocated by the mechanism by time t ∈ (0, T ] grows linearly in t (see
proof in appendix).

While the expected USD rewards allocated by the mechanism are linear in
time after the time d, how do we know that the cumulative fees paid (which is
a proxy for volume) will be linear in time? Well, it turns out that the fees paid
will not be perfectly linear, due to the time-value of money; for instance, people
would rather pay for an asset that they will receive in 8 days than something they
will receive in 35 days. However, since the time interval between fee payment
and receiving assets is so small, and risk-free interest rates are approximately 0,
we approximate the time value of money to be constant. With this assumption,
it becomes obvious that a set of rational traders with the ability to efficiently
short DYDX will have no preference for what time they short the DYDX, since their
information about other traders does not change over time, and the expected
rewards in each time interval of length τ are the same as any other time interval
of length τ . In other words, there is no meaningful distinction between any
of the time intervals of length τ within the epoch, and thus there would be
no reason for strategic changes in the amount paid at those intervals. This
mechanism would thus incentivize an equal amount of payment throughout the
epoch.

Another way to conceptualize why this mechanism incentivizes constant rate
of fee payment is through a proof by contradiction. For any τ ∈ (0, T ], consider
two time intervals A = (a, a + τ ] and B = (b, b + τ ], and the rewards that will
be allocated during those time periods, RA and RB . The expected rewards
to be paid out in time interval A, as calculated at the beginning of the epoch
(assuming E[p(t)] = p(0) for all t ∈ (0, T ]), is

E[RA] =
R

T

∫ a+τ

a

E[p(t)]dt =
Rp(0)τ

T
.

Similarly for the interval B,

E[RB ] =
R

T

∫ b+τ

b

E[p(t)]dt =
Rp(0)τ

T
.

Therefore, at the beginning of the epoch, E[RA] = E[RB ]. The expected
rewards allocated in time intervals A and B are the same.

Although the expected rewards are the same for any two equal-length in-
tervals in the epoch, it does not follow that there is a unique Nash equilibrium
strategy for trading across the entire epoch. This is largely due to the fact that
there are infinitely many repeated “stage games”. Trading on interval A is an
example of a stage game, and we can use the results from section 2 to show that
it has a unique Nash equilibrium, since it is equivalent to an epoch with total
length T/n and total reward R/n.

However, there may be opportunities for strategic behavior across games.
For instance, trader imight overpay fees by an egregious amount in early trading
intervals so as to lower the rewards of other traders, and when they respond with
lower fees paid in future epochs, trader i might lower their fees again; by this

28



strategy, trader i might find a way to pay an overall lower amount in fees and
get the same amount (or more) in rewards than they would by adhering to the
stage game equilibrium throughout the entire epoch. We do not provide an
example of such a Nash equilibrium here, but this would be a natural way to
extend the paper to learn more about this mechanism.

4.4.2 Mechanism Properties

1. Benefit: Mechanism incentivizes constant rate of fee spend and volume
over the entire epoch.

2. Benefit: Estimating trading rewards becomes much easier. This will al-
low dYdX Trading to incorporate better estimates for traders’ expected
rewards into the user interface.

3. Benefit: The complexity required to implement this is very small, as it
only requires the creation of a smart contract that uses a random oracle
to generate the trading interval start/end times and a slightly modified
query to compute traders’ rewards with those intervals.

4. Slight Drawback: It is slightly more complicated for dYdX Trading to
implement this change to the rewards formula. Still, the only new elements
of this mechanism that requires thoughtful implementation is the random
noise parameter r and the multi-interval trader rewards calculation.

5. Benefit or Drawback: Mechanism yields higher rewards for traders who
split their trades into multiple, smaller trades. One can check that the
value of placing two orders of half the size, but in different trading inter-
vals, can yield a higher trading reward. When taken to the extreme, one
could space out trades across an entire epoch to earn on the order of 4x
more in rewards than they would get from buying once in the middle of the
epoch. This may be seen as a benefit, however, since it encourages users
to engage with the protocol more frequently. This multiplier decreases as
we increase trading interval length (d) or increase the fee weight in the
trader rewards formula (a).

6. Drawback: When we relax the assumption that rewards-profit-maximizing
traders have the ability to short the rewards token, then our model would
require that those traders are risk neutral and believe the rewards token
is trading at or below what its value will be at distribution time. If we
relax these assumptions, then the nice properties of this mechanism, such
as incentivizing constant volume across the epoch, break down due to
traders’ risk aversion to holding the rewards token. However, this can be
alleviated by a pre-epoch token sale.

7. Drawback: By requiring rewards-profit-maximizing traders to intersperse
their trading throughout the epoch, we make it less accessible for less
sophisticated traders to maximize their rewards. Thus, we would expect
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to observe that although this mechanism incentivizes a continuous rate of
fees paid, it would lead to rewards going to an even more concentrated set
of token holders than the original trader rewards mechanism.

8. Drawback: This mechanism is composed of infinitely many stage games,
and it is possible that it thus has multiple Nash equilibria.

Due to the difficulty that this mechanism imposes on rewards-profit-maximizing
traders and the lack of clarity for Nash equilibria strategies, we do not recom-
mend this mechanism as a replacement to the current rewards mechanism.

4.5 Pre-Epoch Token Sale

4.5.1 Overview

Currently, dYdX distributes 3,835,616 DYDX token at the end of each epoch. As
evidenced before, a dominant strategy in the current trading rewards regime is
to wait until the end of the epoch to pay fees, and one of the most important
factors for determining the amount of fees paid in the end of the epoch is the
price of DYDX near the end of the epoch. By virtue of DYDX’s price volatility, this
makes it challenging to estimate the dollar value of rewards that will be given in
each epoch, and thus risk-averse traders would be less inclined to participate in
rewards maximization behavior. This is especially true for traders who do not
have the means to short DYDX token, or who simply do not want to go through
the hassle of shorting the token. Distributing rewards in DYDX presents a barrier
to entry for rewards-maximizing traders.

A solution to this is to conduct a sale of 3,835,616 DYDX into stable assets be-
fore the beginning of each epoch. The revenue generated through this sale would
be publicly announced as the amount of trading rewards available, denominated
in stable assets, such as USDC.

Below we give more specifics on the mechanisms that can be used to conduct
this token sale.

4.5.2 Dutch Auction Token Sale

One option would be to conduct a Dutch auction to sell R DYDX tokens. Here
we briefly describe a Dutch auction.

In a Dutch auction, the auctioneer begins at a price phigh above what any
bidders would be willing to pay; then, at scheduled time intervals, the auctioneer
lowers the price. When the auctioneer’s announced price meets the price at
which a bidder values an item, the bidder i places a bid for ni of the auctioned
good; this bid is public information. This process continues until the sum of bid
sizes reaches the total amount to be auctioned off, i.e.

∑
i ni = R, or the bidding

price reaches a minimum “reserve price” set by the auctioneer, pr. The price at
which the last bid was placed, p∗, is the price paid by all auction participants:
player i pays a total of p∗ · ni to the auctioneer, and the auctioneer allocates ni

of the good to player i. This is a simple Dutch auction.
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Dutch auctions provide a simple mechanism that makes it easy to orchestrate
large token sales on-chain. However, a trader’s optimal Dutch Auction bidding
strategy can be complicated, as it involves predicting how other traders will
bid. Furthermore, it has been observed in previous crypto Dutch Auctions that
price falls shortly after the auction. This behavior can be understood when we
consider the position of a market maker (i.e. liquidity provider): if a public
Dutch Auction’s clearing price is below the current market price, then liquidity
providers will remove their buy offers before the auction participants sell; this
leads to lower liquidity, which in conjunction with a collection of auction winners
who are willing to sell, leads to large negative price impact on the auctioned
token. The other case, where the Dutch Auction’s price clears above the current
market price, is not a realistic result either: why would a bidder offer more to
buy through the Dutch Auction mechanism than through existing spot markets?

It seems that Dutch Auctions do not constitute a great mechanism for con-
ducting large token sales, due to their impact on liquidity / market stability for
the token being auctioned.

4.5.3 OTC Desk Sale

A more viable option for DAOs is to conduct a sale through existing OTC
desks. An OTC sale would entail the following steps: first, the DAO gives the
sale token to the OTC desk, with the agreement that the OTC desk sells the
token over a period of time; second, the OTC desk sells the token over the
agreed period of time, with the intention of not moving the market; finally, the
DAO and the OTC desk agree upon a publicly-verifiable time-weighted average
price (TWAP) over the sale period, and the OTC pays back the DAO the value
of the token, as calculated by the TWAP, aside from a fee of 0.25%-1%.

This method of sale is the current best practice for large sellers to get a rea-
sonable execution price, and we believe it is currently the best way for dYdX to
conduct a token sale. While this form of sale does require trusting a centralized
OTC desk, it yields the best execution price for the DAO.

4.5.4 Mechanism Properties

1. Benefit: Rewards-profit-maximizing traders for whom shorting the DYDX

token is an impediment will have no longer have a barrier to maximizing
their rewards.

2. Benefit: The exchange will be able to predict its volume, and thus revenue,
for the next 28 days with significant accuracy.

3. Drawback: Selling 3,835,616 DYDX is not trivial. This could likely be done
through an OTC desk, but at some cost; it could also be done through
a Dutch auction, however this mechanism has historically led to deflated
token prices following the auction (e.g. the algorand auction).
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4.6 Mechanism Recommendations

1. Keep the current rewards mechanism (i.e. Mechanism 0). Although Mech-
anism 3 provides a solution to the elevated end-of-epoch trading prob-
lem, it makes rewards optimization infeasible for less sophisticated, lower-
frequency traders. This would lead to lower exchange revenues and a
denser concentration of rewards recipients. The current rewards mecha-
nism, despite its high fees near the end of each epoch, is the most accessible
option we have seen so far.

2. Increase the fee weight parameter to a = 0.8, and decrease the open
interest weight parameter to b = 0.15. This change alone is expected to
increase epoch revenues by approximately 20%, which currently comes out
to over $3M per epoch.

3. Conduct a sale of 3,835,616 DYDX token into stable coins before each epoch
begins, and give all of the proceeds as stable coin rewards. This approach
can be used to open up DYDX supply to the entire market to purchase DYDX
at a discount, rather than just traders. It is also expected to increase
exchange revenues, since risk-averse traders have more guarantees about
the market value of stable coin rewards. This will also open up rewards
maximization to traders who do not have the means to short the DYDX

token, thus making rewards more accessible to less sophisticated traders.

5 Conclusion

Since the introduction of dYdX’s rewards mechanisms, the exchange has seen
a meteoric rise in volume and open interest. Of course, with these economic
incentives also come profit maximizing traders, and trading behavior in previous
epochs has demonstrated that there is no shortage of traders willing to trade to
maximize their trading rewards. This paper was conceived with three objectives:
(1) prove results about the nature of the dYdX trader rewards mechanism, (2)
‘open source’ this rewards profit maximization problem to make it possible for
any motivated trader to algorithmically optimize their strategy, and (3) give
recommendations for how the mechanism can be improved.

In section two, we tackle objectives (1) and (2). First, we argue that there
is an incentive for traders to wait as late as possible into the epoch to pay
fees, explaining the observed behavior of amplified late-epoch trading. Next,
we provide an algorithm to find the optimal amount of fees paid for each trader
using Newton’s method, and we prove that it is a Nash equilibrium for all
traders to pay that amount in fees. Then we show that this Nash equilibrium is
unique, asserting that any rational rewards-maximizing trader would certainly
pay fees according to the results of our algorithm. We then show that these
results apply to the current trader rewards formula with stkDYDX as well as the
original rewards formula. We provide all of the math for finding the optimal
fees paid in this paper, and we provide open-source code for traders to find
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their own optimal amount of fees paid as well. The return on the rewards-profit
maximizing strategy is substantial: upwards of 64% annualized return on capital
deployed, all compatible with a price-neutral strategy.

In section three, we compare our game theoretical model to real-world his-
torical exchange data. We find that it is not valid to assume that traders pay
a negligible amount in fees in the beginning of the epoch. However, we also
find that under certain mild conditions, the trader rewards incentives alone are
sufficient to explain all of the trading volume on the dYdX exchange in more
recent epochs. This prompts a chilling question: what would happen if rewards
were to stop, or become less valuable? This is an extremely important question,
nevertheless it is not within the scope of this paper to speculate on its answer.

In section four, we provide an overview of alternative trading rewards mecha-
nisms. Most trivial changes, such as taking the median trader score on an hourly
basis or shortening the length of dYdX’s epochs, do not solve the fundamental
reason for elevated end-of-epoch trading. Only when we make it impossible for
traders to know the precise end of a trading interval will they stop artificially
trading to increase their rewards. This is the crux of “Mechanism 3: Mini-
Intervals”. However, we find that by incentivizing a continuous rate of volume
throughout the epoch, we give an advantage to sophisticated traders with con-
sistent exchange up-time. We thus settle for the existing mechanism, albeit with
modified Cobb-Douglas weight parameters: a = 0.8 and b = 0.15, which should
increase fee revenues by upwards of $3M per epoch. In addition to the rewards
mechanism parameter changes, we also recommend conducting a sale of DYDX
tokens before the beginning of each epoch, then using the proceeds of the sale
to distribute rewards; this is meant to make trading revenue more predictable,
as well as to offer a more fair distribution of DYDX near the market rate.

Through this research, we have demonstrated a way for any motivated dYdX
trader to maximize their rewards, we have proved important game theoretical
properties of the trader rewards mechanism, and we have shown how the dYdX
community can improve the rewards mechanism to make it more profitable for
dYdX and more fair for all stakeholders.
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6 Extensions

Here we outline some potential extensions to this research.

1. Better approximations of G. What information could the dYdX foun-
dation provide to smooth the trading process. Total average staked-
DYDX? More specifically they could provide

∑
n(d

0.28
k × g0.05k )?

2. Distributions of D and G. What probability density functions (pdfs)
could we use to better simulate the distribution of open interest and
stakedDYDX?

3. Robustness of Volume without Liquidity Mining. One of the most
important results of this paper is that there is evidence that all of the
dYdX protocol’s trading volume can be explained by the trader rewards
mechanism. If dYdX were to stop providing trader rewards at all, how
much volume would stick around?

4. Accounting for Slippage. We ignore slippage cost in this paper, since
it is so small. To what extent would taking into account slippage affect
our results?

5. Staking Module Rewards Parameter, c. We do not dive into the
nuance of the safety staking module in this paper, and thus do not pro-
pose a change to that parameter. How can we make this parameter more
optimal? And does optimizing this parameter require forming an opinion
on the safety staking module?

6. Extending Fee Optimizations to New Mechanisms. We showed how
a trader can compute their optimal fees under the existing mechanisms,
however we did not extend this research to any of the new mechanisms
that we proposed. What properties can we demonstrate for each of those
mechanisms? Can we show that there is a unique Nash equilibrium for
them as well? Or that there are multiple Nash equilibria?
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7 Appendix

7.1 Proofs

7.1.1 Mini-Intervals Mechanism

Claim: all times in the epoch time range [0, T ) have equal probability
density of being a trading interval end time.

Proof: Let d be the interval length, and T be the epoch length, and let t1, t2
be any two points in S = (0, T ].

We know that t1 must lay in some time interval of the form

Ii = ((i− 1)d mod T, id mod T ],

for some i ∈ N, so t1 is a trading interval ending point if and only if it is the
ending point of the ith trading interval. We also know with probability 1 that
there is exactly one trading interval ending time t′1 = sup Ii, since there is one
ending time at r, r+ d, r+ 2d . . . and r ∈ (0, 1]. The ending time is of the form
t′1 = r + (i − 1)d. Clearly t′1 ∼ U((i − 1)d, id), since r ∼ U(0, d). Therefore,
the probability density that t′1 = t1 is the same as the probability density of
t1 in U((i − 1)d, id). Thus, since t1 is a trading interval ending point if and
only if it is interval i’s trading interval ending point, it has probability density
1/(id− (i− 1)d) = 1/d of being a trading interval ending point.

We can apply the same argument to t2 to find that its probability density
function for being the trading interval ending point is 1/d. Thus, for any two
points in S, the probability density of being a trading interval ending point is
1/d. This is the desired result.

Claim: If the DYDX market is efficient, then the expected cumu-
lative USD nominal value of rewards allocated by the mechanism by
time t ∈ (0, T ) grows linearly in t.

Proof: Let n be the number of trading intervals; let R be the total amount of
DYDX given in rewards over the entire epoch; let p(t) be the expected market-
clearing DYDX ask price at time t; and let T be the length of the epoch. At
the end of each trading interval, the mechanism allocates R

n of DYDX, and if

this allocation happens at time t it has Rp(t)
n of nominal US dollar value. Also,

it is known that n = T/d.
Let E[N(t)] represent the expected amount of DYDX rewards allocated by

the mechanism by time t.
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For a small ∆t, we have that

E[N(t+∆t)−N(t)] = E[N(t+∆t)]− E[N(t)]

= Pr(rewards are allocated between t and t+∆t) · Rp(t)

n

=
∆t

d
· Rp(t)

n
// see ‘equal PDF of end of interval’ proof

=
∆t

d
· Rp(t)

T/d

= ∆t · Rp(t)

T
.

Therefore, we find that

E[N ′(t)] = E

[
lim

∆t→0

N(t+∆t)−N(t)

∆t

]
= lim

∆t→0

E[N(t+∆t)−N(t)]

∆t

=
Rp(t)

T
.

If the DYDX market is efficient, then the expected market-clearing DYDX
ask price at time t is given by p(t) = p(0) (assuming that the time-value of
money is negligible). Suppose this were not the case, then a rational trader
could profit by trading DYDX at time 0, which would contradict the efficient
market antecedent.

Therefore, when we assume efficient markets, we find that for t ∈ (0, T ],

E[N ′(t)] =
Rp(0)

T
.

This is not a function of t at all! Thus, it is trivial to find the DE’s solution
as follows

N(t)−N(0) =

∫ t

0

Rp(0)

T − d
dx

=
Rp(0)

T
t.

Since N(0) is 0 (no rewards are allocated within the first moment of the
epoch), we have that the cumulative nominal dollar value of DYDX given by
time t ∈ (0, T ] is

N(t) =
Rp(0)

T
t.

This is the desired result.
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7.1.2 Nash Uniqueness Proof

We can prove the uniqueness of our Nash equilibrium using the Banach fixed-
point theorem 3. We will show that our algorithm creates a contraction map 4 g
which admits exactly one fixed point, our Nash equilibrium. Using the Banach
fixed-point theorem to prove the uniqueness of a Nash equilibrium is a common
exercise, and in fact can be used to show that for any twice-differentiable func-
tion in a convex metric space for which Newton’s method converges, there is a
unique fixed point 5 6 7.

Define our metric space (Rn, d) as the Euclidean space with the Euclidean

distance metric, where a vector F⃗ ∈ Rn corresponds to our fees vector, and our
metric function d is defined by the Euclidean norm, or equivalently, the root
mean squared error between two fees vectors. Proofs that the Euclidean space
with the Euclidean norm is complete are readily available online, so we will take
that for granted. We must now show that the Newtonian update function from
Newton’s method is a contraction map on Rn.

A contraction map is defined as any function g : Rn → Rn such that there
exists a positive number q < 1 where ∀F⃗x, F⃗y ∈ Rn:

d(g(F⃗x), g(F⃗y)) ≤ qd(F⃗x, F⃗y) (11)

Notice that it would be sufficient to find and prove that our Newtonian
update function g is Lipschitz continuous with Lipschitz constant 0 < K < 1.
However, for an n-dimensional function in an unbounded open set Ω, it quite
troublesome to analytically determine a finite Lipschitz constant K. Instead,
we can limit our metric space to a sufficiently small neighbourhood of F⃗ ∗, a
fixed point of g in Rn. That is, instead of asserting g is a contraction map in all
of Rn, we can take a sufficiently small subset of Rn wherein our fixed point lies,
and show g is a contraction map within this subset. Intuitively this is sufficient
since there is a finite amount of capital any trader can pay in fees and can be
encapsulated by our choice of δ.

Define our neighbourhood as Nδ(p⃗) = {F⃗ ∈ Rn|d(F⃗ − p⃗) ≤ δ}. We will show
that for sufficiently small δ > 0, g maps Nδ(p⃗) into itself and is a contraction

on metric space Nδ(p⃗). It suffices to show that for such a δ > 0, ||∇g(F⃗ )|| ≤ K
in Nδ(p⃗). Notice that:

g(F⃗ ) = F⃗ − P⃗ ′(F⃗ )

P⃗ ′′(F⃗ )
(12)

∇g(F⃗ ) =
P⃗ ′(F⃗ )P⃗ (3)(F⃗ )

P⃗ ′′(F⃗ )2
(13)

3https://en.wikipedia.org/wiki/Banach fixed-point theorem
4https://en.wikipedia.org/wiki/Contraction mapping#Locally convex spaces
5https://www2.math.upenn.edu/ kazdan/508F10/palais.pdf
6https://pages.cs.wisc.edu/ sifakis/courses/cs412-s13/lecture notes/CS412 29 Jan 2013.pdf
7https://schoolbag.info/mathematics/advanced/18.html
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The proof becomes very simple. Notice that by the definition of our fixed
point: g(F⃗ ∗) = F⃗ ∗, so P⃗ ′(F⃗ ∗) = 0. It follows from equation (9) that ∇g(F⃗ ) = 0.

By the evident continuity of ∇g, it must be that for any K > 0, ∇g(F⃗ ) ≤ K
for g : Nδ(p⃗)→ Nδ(p⃗). Hence, there must exist δ that ensures g is a contraction

map in the neighbourhood of our fixed point F⃗ ∗. By the Banach fixed point
theorem: A contraction mapping T : X → X admits one unique fixed-point x∗

in X. Hence, our fees vector F⃗ ∗ is a unique Nash equilibrium in g(F⃗ ∗) = F⃗ ∗.
Notice that the key assumption was creating a sufficiently small neighbour-

hood using δ > 0. This does not undermine the proof that g is a contraction
map, and in fact we could use any finite δ > 0 in our proof above.

7.1.3 Allocating stkDYDX

Let’s begin by examining the optimal allocation of capital between open in-
terest and stkDYDX. Denote l as your average leverage ratio throughout the
epoch, and M as your total capital available to put toward a rewards profit
maximization strategy at the beginning of the epoch. Then our optimization is
to maximize:

(lx)0.28 ×max(10,M − x)0.05, (14)

where x is the amount of equity in dYdX trading protocol, as opposed to
staking (note that average open interest d = lx). We can easily compute what
the optimal allocation of x is by taking the derivative of the above expression.
Let’s begin by considering the case where g > 10:

d

dx
((lx)b × (M − x)c) = 0 (15)

Using the product rule and solving for x:

x =
b

c+ b
M (16)

We can then compute the exact initial capital required for g > 10 to be an
optimal allocation:

(lM)b × 10c = (l
b

c+ b
M)b × (M − b

c+ b
M)c (17)

Solving for M :

M∗(b, c) =
10(b+ c)

c
× (

b

b+ c
)−

b
c

≈ 166

(18)

Hence, for M > M∗ ≈ 166, one should allocate stkDYDX according to
equation 11, otherwise one should hold no stkDYDX.
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7.1.4 Approximate Return on Deployed Capital

Let us use the closed form approximation from equation 6 and the result of
return-on-fees-spent to approximate an investor’s return on deployed capital to
this strategy. Let roi be the return on deployed capital, l the trader’s average
leverage ratio, c the trader’s account equity, rf their return on fees spent, R
the total DYDX rewards, p the price of DYDX, D the total open interest, f the
trader’s total fees spent, d the trader’s open interest, and P the trader’s profit
from fees spent.

We know the trader’s profit from fees spent is is given by P = rff . From

equation 6 we know that f = d 0.7Rp
D . Also by the definition of the average

leverage ratio, we have d = lc. Thus f = (lc) 0.7Rp
D . So profit is P = rf (lc)

0.7Rp
D .

Thus, total return on capital deployed is

roi =
P

c

=
rf (lc)

0.7Rp
D

c

=
0.7Rprf l

D
.
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