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1
Executive Summary

Curve is an Automated Market Maker (AMM) that enables traders to exchange stablecoins and
other cryptocurrencies. On May 2023, Curve deployed its own highly anticipated stablecoin,
crvUSD, on Ethereum mainnet. crvUSD quickly climbed to over 100M in issued crvUSD debt,
and $200M in deposited collateral. Like most stablecoins, borrowers may deposit blue-chip
collateral assets (BTC, ETH) or their derivatives (wstETH, sfrxETH, tBTC), in exchange for
crvUSD.
crvUSD differentiates itself from other decentralized stablecoins (such as DAI, LUSD, and FRAX)
with its special-purpose AMM, dubbed the Lending-Liquidating Automated Market Maker Al-
gorithm (LLAMMA). crvUSD borrowers deposit their collateral in LLAMMA in exchange for crvUSD.
As collateral prices fluctuate, arbitrageurs will re-balance LLAMMA reserves by exchanging col-
lateral for crvUSD, or vice-versa. This process, termed “soft-liquidation”, allows arbitrageurs
to slowly liquidate collateralized debt positions (CDPs) as collateral prices decrease by swap-
ping collateral assets for crvUSD, and conversely allows them to de-liquidate positions by sell-
ing the collateral back to LLAMMA as prices climb up1. Through this process, arbitrageurs are 1For details on how LLAMMA manages

to buy volatile assets as prices go up,
and sell them as prices go down (the
opposite of traditional AMMs), please
refer to the crvUSD whitepaper or our
FAQ.

incentivized to partially repay CDPs as their collateralization ratios drop, while in theory mit-
igating the need for full liquidations.
Like most lending platforms, crvUSD is subject to the usual market risks involved with pricing
and liquidating volatile assets. For example, the protocol must ensure that market liquidity is
sufficient to liquidate underwater positions under expected and worst-case asset price volatil-
ity. Unlike most lending platforms, LLAMMA, along with other innovations within the crvUSD
protocol, also introduce new risk vectors that must be modeled and properly understood as
the protocol continues to grow2. 2For an introduction to crvUSD Risks,

please refer to Curve’s support page.
We have developed an Agent-Based Model (ABM) for simulating such market risks for crvUSD
borrowers. Using this model, we have simulated the crvUSD system under a variety of stressed
market conditions. Throughout each simulation, we track several key metrics, with added fo-
cus on the system’s ability to liquidate under-collateralized positions. Taking a Monte Carlo ap-
proach, we aggregate our results over thousands of simulations and dozens of different “stress
scenarios” to analyze Curve’s exposure to market and liquidity risk.
The primary contribution of this project is to develop a Curve-specific ABM for simulating
the crvUSD protocol, and use it to identify key risks and how they may be mitigated. In this
investigative process, we hope to de-mystify certain key mechanisms in the system and provide
a useful framework for the Curve DAO to understand the crvUSD protocol from a market risk
perspective. In particular, we focus on de-mystifying the effect of soft liquidations on borrower
profits, which we will refer to as Losses-Versus-Rebalancing (LVR) throughout this report3, 3For an introduction to LVR, please

refer to Automated Market Making and
Loss-Versus-Rebalancing by Milionis et
al.

as well as providing a better understanding of crvUSD’s Peg Keepers and Oracles in times of
extreme asset price volatility.
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Overview of Results

We simulate the crvUSD system under a battery of stress scenarios that pose adverse yet real-
istic market conditions. This report summarizes the results of this initial risk exploration. We
have identified extreme market volatility, stablecoin depegs, and fluctuations in crvUSD liq-
uidity as the primary sources of risk. That said, we find that under reasonable market stress,
the crvUSD system adequately incentivizes liquidators to close underwater positions and avoid
potential insolvencies.
We simulate how liquidations perform as the amount of crvUSD liquidity accessible to liquida-
tors decreases. Notice that this liquidity is largely concentrated in Curve’s Peg Keeper pools,
which are also the price sources for crvUSD’s oracles. We have found that, if Curve fails to
incentivize crvUSD deposits in Curve’s Peg Keeper pools, the resulting lack of liquidity may
lead to missed liquidations as well as cascading liquidations (i.e., deflationary price spirals).
We suggest the protocol should aim to maintain at least 20% of crvUSD debt in its Peg Keeper
pools4. We discuss some strategies for maintaining crvUSD liquidity in §6.2. 4Throughout Q4 2023, an average of

40% of crvUSD debt was deposited in
Peg Keeper pools.Furthermore, crvUSD uses special-purpose oracles that point to a small subset of high-TVL

Curve pools and apply Exponential Moving Average (EMA) smoothing to minimize borrower
losses due to transient price fluctuations. However, our simulations have identified a few sce-
narios where these underlying Curve pools may exhibit price distortions that lead to missed
or excessive liquidations. The main reason these distortions may occur is if either USDC or
USDT momentarily (or permanently) lose their peg. To address this concern, we consider re-
instituting the Chainlink “guard-rails” in our simulations, which allow crvUSD’s oracles to de-
fault to Chainlink aggregator prices when their EMA prices deviate by a preset limit.
Throughout our simulations, we also measure borrower losses from soft-liquidations. Using
the LVR framework proposed by Milionis et al., we measure the Mark to Market (MTM) value
extracted from LLAMMAs as they buy and sell assets at worse-than-market prices. We compare
these LVR to the fees accrued by the LLAMMAs to estimate net borrower losses. We find that
under moderate volatility regimes, high-leverage borrowers may suffer meaningful LVR that
is not entirely offset by fee income, and which leads to unnecessary liquidations. We simulate
slight increases in LLAMMA’s fees to address this concern, such that fees may more closely offset
expected LVR without dis-incentivizing arbitrageurs from re-balancing positions.
All simulation results may be viewed using our Risk Dashboard. The underlying risk model is
open-sourced under an MIT Licence in this GitHub repository.

Assumptions, Limitations, and Future Work

This is a preliminary risk modeling effort where we introduce an open-sourced, Curve-specific
ABM for simulating the crvUSD protocol. All results are constrained by the modeling assump-
tions and limitations discussed in §7, as well as the scenario assumptions outlined in §4.
It is worth noting that the crvUSD protocol is very intricate, and relies on a combination of sev-
eral complex mechanisms, including novel AMMs, health calculations, and specialized oracles.
A large part of this modeling effort was to investigate and understand these intricacies, and in-
corporate them into a high-fidelity model. However, this complexity increases the probability
of unknown unknowns that may pose a risk to the system and undermine the accuracy of our
results.
Future work may involve applying the model to different market conditions and investigate the
impact of changing the protocol’s parameters, or modifying the logic of select smart contracts.
For example, the model may be applied to investigate the impact of deploying different Peg
Keeper and Oracle mechanisms.
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2
Introduction

We begin with an overview of the crvUSD protocol, with an added focus on key mechanisms such as
LLAMMA, the Peg Keeper, the Oracles, and their relevant parameters. We then provide a definition for
relevant market risks. We describe each risk vector in detail, how such risks may affect borrowers or the
protocol at large, and introduce the metrics used to measure them in our simulations.

2.1 crvUSD Background

crvUSD is a stablecoin issued permissionlessly by a set of smart contracts and soft-pegged to
the U.S. dollar. Users deposit collateral (such as WETH) in exchange for crvUSD tokens. The
general schematic for crvUSD is depicted in Fig 1. We will briefly overview each of crvUSD’s
smart contracts, which we will refer to throughout the report. For more detail, please refer to
the crvUSD whitepaper, our FAQ, or these articles by 0xReviews and Albert Lin.

Figure 1: crvUSD Schematic, taken from thewhitepaper.

2.1.1 Borrower Workflow

Users borrowing crvUSD will deposit their collateral in the Controller contract, which tracks
the collateralized debt position (CDP) and in turn deposits the collateral in the corresponding
LLAMMA. While in the LLAMMA, the user’s collateral may be slowly converted to crvUSD by traders
(henceforth referred to as arbitrageurs) as prices fluctuate, which may prevent the user from
being liquidated but might result in losses to borrower (described later). While the CDP remains
active, the user is charged an interest rate determined by the Monetary Policy contract.
Although purely optional, users may then take their borrowed crvUSD and deposit it into other
AMMs, often Curve’s StableSwap pools. In doing so, users earn CRV rewards directly from
Curve, as well as any fees accrued to the pools. This behavior is crucial to the operation of
crvUSD, as we will see with the Peg Keeping and Oracle mechanisms.

2.1.2 Peg Keeping Mechanism

There are four StableSwap pools5 that are directly used by the crvUSD smart contracts to sta- 5StableSwap pools refer to Curve’s
original AMMs, which minimize slip-
page for trading pegged assets using
the StableSwap Invariant.

bilize crvUSD’s peg against the dollar. These StableSwap pools are all Curve AMMs that pair
crvUSD to another stablecoin, primarily USDC and USDT. Attached to each of these pools is a
Peg Keeper contract, whose job it is to ensure crvUSD is always priced 1:1 with its correspond-
ing stablecoin. At any point, if crvUSD is more expensive than its paired stablecoin in one of
these StableSwap pools, a user may update the Peg Keeper and mint more crvUSD into that
pool. Conversely, if crvUSD is cheaper than its paired stablecoin, a user may update the Peg
Keeper and burn off some of its existing crvUSD deposits in the pool. In either case, updates to
the Peg Keeper will always push the exchange rate between crvUSD and the given stablecoin
to 1.
There are three limits to thePeg Keeper’s updates. First, the Peg Keeper may not mint more
crvUSD than its specified debt ceiling. Second, thePeg Keeper may not burn more crvUSD
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than its existing crvUSD deposited in the StableSwap pool. Finally, the Peg Keeper may only
perform an update depending on the current aggregated crvUSD/USD price reported by the
Aggregator, discussed in the following subsection.
Throughout this report, we will refer to these StableSwap pools as Peg Keeper Pools.

2.1.3 Oracles

crvUSD has two types of oracles, the stablecoin price Aggregator and collateral Oracles. The
Aggregator contract aggregates prices from the Peg Keeper Pools to approximate a crvUS-
D/USD price. The Aggregator acts as the de facto crvUSD/USD oracle, and determines whether
or not a Peg Keeper may perform an update. For example: if a Peg Keeper Pool is reporting
a crvUSD price > 1, but the Aggregator reports a price < 1, the Peg Keeper will not be al-
lowed to mint new crvUSD. This prevents a Peg Keeper from minting excessive crvUSD due to
a price distortion in a specific Peg Keeper Pool. As we will see in §5, this mechanism is the
key to preventing crvUSD’s Peg Keepers from contributing to a “death spiral”, even if one of its
paired stablecoins (like USDC) depegs. We dive deeply into this in §5.4.
The second type of oracle is the collateral Oracle. The collateral Oracle is complex, and re-
lies on price feeds from several Curve pools, depicted in Fig 2. In the figure, we see that the
Oraclehas three primary price feeds: prices from Curve’s TriCrypto pools, prices from Curve’s
StableSwap pools (i.e. Peg Keeper Pools) and the Aggregator price. It combines these price
feeds to produce a collateral/USD price, which is then fed into LLAMMA. The two primary sets
of pools used by the Oracles are the USDC/WBTC/WETH and USDT/WBTC/WETH TriCrypto
pools, and the USDC/crvUSD and USDT/crvUSD Peg Keeper Pools.

Figure 2: This figure illustrates how soft liquidations may increase the crvUSD/USDC price consumed by
LLAMMA’s oracle, which decreases the oracle’s reported ETH/USD price. This process may lead to cascadingliquidations under certain conditions. The Aggregator,Peg Keepers, and EMA mechanisms all serve tomute the price impact of individual trades on the crvUSD/USDC pool and prevent cascading liquidations.

The Oracle’s primary purpose is to provide real-time price updates to LLAMMA, compared to
Chainlink oracles which update less frequently (e.g. hourly or daily). Furthermore, crvUSD’s
oracles apply a smoothing factor to spot prices using an Exponential Moving Average (EMA),
which dampens the effect of short-term fluctuations in prices. As shown in previous modeling
efforts, this EMA smoothing generally leads to an improvement in borrower profits (both by
reducing borrower LVR, and preventing unnecessary liquidations).6 6This EMA smoothing is actually ap-

plied in each individual Curve pool,
and then fed into the Oracle.

2.1.4 LLAMMA

The Lending-Liquidating Automated Market Maker Algorithm ( LLAMMA) is a special-purpose
AMM where all crvUSD collateral is deposited. In that sense, all crvUSD borrowers are Liquidity
Providers (LPs) in a volatile AMM. It follows that they suffer similar losses to LPs on AMMs such
as Uniswap, and share in similar benefits, like fees.
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LLAMMA, the key innovation behind crvUSD, is an oraclized AMM. This means that the price
reported by LLAMMA depends directly on the prices it receives from its Oracle. As the Oracle
price decreases, LLAMMA’s price actually decreases faster, allowing it to “invert” the traditional
behavior of an AMM by setting a lower-than-market price, incentivizing arbitrageurs to buy
collateral from LLAMMA instead of sell it. This means that as collateral prices decrease, LLAMMA
sells more collateral, instead of the usual behavior of an AMM, where the AMM buys whichever
asset decreases in market price. This relationship between LLAMMA’s price and the Oracle price
is illustrated in Fig. 3. Notice that as the Oracle price rises, LLAMMA’s price rises faster.
This allows LLAMMA to “liquidate” positions by incentivizing arbitrageurs to purchase LLAMMA’s
collateral in exchange for crvUSD, effectively partially repaying the debt. If prices rebound,
LLAMMA then incentivizes arbitrageurs to “de-liquidate” positions by selling collateral back to
the AMM. These swaps are referred to as “soft liquidations”, which distinguishes them from
“hard liquidations”, where a liquidator repays the entire debt position and takes the user’s col-
lateral as a reward. Soft liquidations can be loosely interpreted as “partial and impermanent”
liquidations.

Figure 3: Left: Simulated LLAMMA and oracle prices for the wstETH market. Right: Empirical LLAMMA andoracle prices from the crvUSD subgraph for the wstETH market. Notice that the LLAMMA price moves fasterthan the oracle price in both plots, and confirms that our simulated arbitrageurs approximate theexpected behavior.
LLAMMA is somewhat similar to a Uniswap v3 AMM, in that it is composed of several smaller
AMMs called “bands” (referred to as “ticks” in Uni v3 pools)7. When creating their loan, users 7Refer to this article for a direct com-

parison between the two AMMs.determine the number of bands they would like their collateral to be spread over. When com-
puting borrower healths, collateral placed in bands farther below the current price is “worth
less” than collateral placed in bands closer to the current price. This is intuitive: collateral may
only be exchanged by arbitrageurs into crvUSD once prices reach those bands, at which point
the collateral would be exchanged at a lower price. For example, if an LP places 1 WETH at the
current LLAMMA band (say, at 2500 WETH/crvUSD price), and places 1 WETH at a lower band
(say, at 2000 WETH/crvUSD price), then it is clear that the WETH at the higher band is worth
“more” crvUSD from the AMM’s perspective, than the WETH at the lower band. Collateral at
lower bands is also “safer”, in that it is farther away from potential soft liquidations (arbitrages).
Like most AMMs, LLAMMA charges a fee for all swaps performed against it. This accrues entirely
to LLAMMA’s LPs (the crvUSD borrowers) and may offset or exceed the losses incurred by the
fact that the LPs are trading at worse-than-market prices.

2.1.5 Health and Hard Liquidations

Finally, we describe how crvUSD calculates loan and health and incentivizes liquidations. crvUSD’s
health calculations are significantly more nuanced than most lending platforms, and rely heav-
ily on the math behind LLAMMA’s bonding curve. At a high level, health is calculated by aggre-
gating the value of a user’s collateral at each band. As previously mentioned, collateral in lower
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bands is treated as less valuable than collateral in higher bands. The Controller contract cal-
culates the user’s health by summing the value of the user’s collateral in each band, and then
dividing it by the user’s debt. Finally, a liquidation_discount is applied, which acts as a min-
imum over-collateralization ratio.
If the user’s health falls below 0, then the value of the user’s collateral does not sufficiently
over-collateralize their outstanding debt. At this point, any user may call the Controller’s
liquidate function. To perform a liquidation, the liquidator must first repay the targeted
user’s debt (minus whatever crvUSD the targeted user has accrued in LLAMMA). The liquidator
then receives all of the user’s collateral token as a reward. The difference between the dollar
value the liquidator paid to repay the CDP and the dollar value they receive from selling the
collateral is the liquidation incentive. We describe how we model this in §3.

2.2 Risk Vectors

From this overview of the crvUSD protocol we derive the key risk vectors being investigated in
this report. This is not an exhaustive list of risks; it includes those risks we believed were most
important in this initial modeling phase. We begin with two standard sources of risk in lending
protocols, followed by three novel risk vectors resulting from crvUSD’s design.

2.2.1 Missed Liquidations and Bad Debt

If prices move too quickly, or market liquidity dries up, then the protocol might experience
“missed” liquidations. This occurs when liquidators are unable to profitably liquidate an un-
derwater position. The primary reason liquidations may be missed is due to a lack of market
liquidity. In this case, this lack of liquidity manifests itself in two distinct ways:

1. There is insufficient sell-side liquidity for crvUSD, preventing liquidators from being able
to repay a CDP’s debt.

2. There is insufficient buy-side liquidity for the collateral token, preventing liquidators
from being able to sell the collateral received from liquidations and lock in a profit.

We measure the impact of missed liquidations using a metric termed “Bad Debt”, which has
been popularized on many lending protocols, most notably Maker. For crvUSD’s case, we de-
fine “Bad Debt” as any crvUSD debt belonging to an account with sub-zero health. That is,
“Bad Debt” equates to debt that should have been liquidated, but wasn’t. We track the maxi-
mum amount of bad debt observed in each of our simulations as our primary risk metric, and
consider the mean, median, and p99 values observed across all simulations.
As we discuss in §5, the p99 bad debt metric should be interpreted as the worst-case daily bad
debt, as we run our simulations on a 24 hour horizon. Intuitively, excessive bad debt may lead
to the protocol being under-collateralized (some refer to this as “insolvency”), which in turn
threatens crvUSD’s ability to hold its peg.

2.2.2 Cascading Liquidations

Liquidations rely on both purchasing the debt token (crvUSD) and selling the collateral token
(e.g. WETH). In this process, the liquidator both inflates the price of the debt, and deflates the
price of the collateral. Both may have a deleterious impact on oracle prices and therefore lead
to additional losses and liquidations. This phenomenon is known as cascading liquidations.
As discussed in §3, cascading liquidations may be modelled by incorporating the price impact
of liquidations into the simulated prices themselves. In our case, we simulate each Curve pool
directly using the curvesim and crvUSDsim packages, developed by the Curve Research sub-
DAO. All trades simulated against these pools will move the price of the crvUSD token, and may
therefore trigger further liquidations at worse prices. This is partially addressed by the EMA
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smoothing applied by the Oracle.
However, as discussed in §7, we model collateral prices as exogenous to the system. This means
that, although we do capture the effect of liquidations on crvUSD price, trades involving col-
lateral assets do not affect the future simulated market prices for those assets8. This is a clear 8This is not to say we don’t model the

slippage incurred when exchanging
collateral assets. This is done accord-
ing to the methodology is §3.2.4.

limitation of our modeling approach (although currently not a major limitation given crvUSD’s
small size relative to its primary collateral tokens: wstETH, WETH, and WBTC), and should be
addressed in future work.

2.2.3 Oracle Risk

A potential risk for crvUSD is that LLAMMA’s Oracle price deviates meaningfully from the spot
price for any of its collateral tokens. This may occur for two reasons:

1. The EMA applied by the Oracle causes prices to go stale. By the time risky positions
become eligible for liquidation, market prices may have moved past the point where the
liquidations are profitable.

2. The price sources used by the Oracle, namely the USDC and USDT Curve pools (both
TriCrypto and StableSwap pools) experience unexpected price distortions, such as a de-
peg.9 9There is an additional risk that the

oracle price may be intentionally ma-
nipulated to trigger profitable liquida-
tions. We do not model this behavior.Although somewhat unexpected, we have found that (2) poses a meaningful risk to borrowers

when either USDC or USDT depegs, implying that a safeguard may be put in place to protect the
Oracle against such distortions. We measure this oracle risk using two metrics: the amount
of debt liquidated, and the percentage error between the simulated market price and the re-
ported Oracle price. In either case, distortions in the Oracle price lead to greater debt being
liquidated, an increase in the error metric, and an increase in bad debt.

2.2.4 Peg Keeper Risk

The Peg Keeper modules are the only contracts capable of “minting” crvUSD without first de-
positing collateral in LLAMMA. A natural risk is that the Peg Keeper mints an infinite amount of
crvUSD, leading to a collapse in its value. There are two primary mechanisms preventing this
from occurring, both of which have been previously discussed in §2.1.2.
In our analysis, we have found that both mechanisms are crucial in preventing a collapse in
crvUSD’s value. In particular, we have identified that a depeg in any of crvUSD’s Peg Keeper
counterparts (USDC, USDT, TUSD, and USDP) may lead to the Peg Keeper minting excessive
crvUSD. However, in the vast majority of simulations, the Aggregator mechanism prevents the
Peg Keeper from minting any crvUSD at all, and in the rare cases where the Peg Keeper does
mint excessive crvUSD, the amount it can mint is capped by a debt ceiling (controlled by the
DAO). In each simulation, we track the net amount of debt minted by each Peg Keeper.

2.2.5 LVR Risk

Finally, we describe how borrowers may hemorrhage capital due to continuous soft liquida-
tions. We have referred to this concept as LVR (loss-versus-rebalancing) as it is identical to the
concepts described by Milionis et al. in this paper. As arbitrageurs rebalance LLAMMA’s reserves
against the market, LLAMMA’s LPs end up trading at worse-than-market prices. For example,
if the market price of ETH increases, LLAMMA will report an even higher price, at which point
arbitrageurs will sell ETH to the LLAMMA to bring prices down. In this process, LLAMMA’s LPs
have purchased ETH at higher-than-market prices. This is shown very clearly in Fig. 3. We
formalize the LVR metric in §5.2.1.
LVR is undesirable for borrowers for two reasons: (1) it may lead to material losses depending
on the exit price at which the borrower repays their loan, and (2) it may lead to a reduction
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in health, and eventually a hard liquidation. LVR is both mitigated by, and (as we will discuss)
potentially exacerbated by, the Oracle mechanism.
As shown by Milionis et al., LVR increases proportionally to asset price volatility. The counter-
part to LVR is fee income: arbitrageurs also pay a fee to the AMM when executing a swap. In a
perfectly competitive market, the amount paid in fees would approximately equal the amount
lost through LVR. In each simulation, we track both the fee income and the LVR that accrued
to all LLAMMAs.
We measure the difference between LVR and Fee income in our simulations to investigate
whether LVR does or does not lead to unnecessary liquidations10. We consider how increas- 10We define “unnecessary” liquida-

tions as liquidations where the orig-
inal collateral deposited by the bor-
rower would have otherwise kept
their loan healthy, but due to losses
from soft-liquidations is no longer
sufficient to keep their health above
zero.

ing LLAMMA’s swap fee affects the soft liquidation process, and whether it meaningfully reduces
losses to borrowers.
Of course, LVR and fees are not a complete picture for the borrower’s PnL: they also pay a
borrow rate, and may be “hard” liquidated. Losses from either of these is not tracked by our
LVR − Fees metric.

2.3 Summary of Metrics

To address the aforementioned risks we focus on the following key metrics for each simulation:
1. Bad Debt: the maximum amount of debt that should have been liquidated, but wasn’t.
2. Liquidated Debt: the total amount of debt that was hard liquidated at the end of the

simulation.
3. Net PK Debt: the maximum amount ofPeg Keeper debt minted over a simulation.
4. LVR: the dollar value coming out of LLAMMA minus the dollar value going into LLAMMA,

accumulated over all timesteps in each simulation. This simple metric tracks the loss in
value to LLAMMA’s LPs due to them trading at worse-than-market prices.

5. Fee income: the dollar value coming into LLAMMA from fees, accumulated over all timesteps
in each simulation. For direct comparison to LVR, we also dollarize the fee income at each
timestep.

6. Oracle error: we track the error between the reported oracle prices and the simulated
market prices. This allows us to identify if and when the oracle might deviate from spot
prices.

The metrics are then aggregated across all simulations. We generally consider the mean, me-
dian, and p99 values.
The Bad Debt, LVR, and Fee metrics are calculated as a percentage of the total initial debt for
each simulation. This allows us to normalize results across all scenarios, which might begin
with different amounts of debt in the system. It also allows us to map results onto the current
state of LLAMMA, despite the fact that it would have slightly different debt amounts than those
in the simulation.
To mark the LVR and Fee metrics to market, we use the simulated Aggregator price as a dollar
equivalent for crvUSD.
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3
Risk Model Overview

Our risk model rests on a high-fidelity representation of all crvUSD smart contracts and how simulated
agents might interact with them. We simulate how 3 key agents, the Arbitrageur, Liquidator, and Keeper,
interact with each crvUSD contract based on simple decision functions. We track several key metrics
using our Agent-Based model and aggregate them over thousands of simulations. In this section, we
overview the key components of our model.

The model combines three common modeling strategies among financial risk managers: The risk model is open-sourced un-
der an MIT license here.

1. Agent-Based Modeling: we develop models for each of the system’s key agents and how
they interact with crvUSD’s contracts. The agents, therefore, define how the system tran-
sitions from one state to another, largely dependent on simulated prices and liquidity.

2. Stress Testing: we run our simulations under varying degrees of market stress. The exact
configuration for each model run is termed a "Stress Scenario", and defines how volatile
prices will be, how much debt will be in the system, etc..11 11Our Stress Testing framework is

inspired by the Fed’s DFAST Stress
Testing guidelines for banks, which
defines baseline, adverse, and severely
adverse economic conditions. In our
case, severely adverse economic con-
ditions resemble volatile prices, low
liquidity, and large amounts of risky
debt.

3. Monte Carlo: we aggregate metrics over one thousand simulations for each scenario. We
consider the mean, median, and p99 values for each metric to draw insights about the
system.

At a high level, this means we are running thousands of simulations where agents are acting
under varying degrees of market stress. We collect metrics about how the system performs in
each simulation, aggregate them over all our model runs, and use these results to draw mean-
ingful insights. Each simulation spans 24 hours of price updates at a 5 minute granularity12. 12The coarse 5 minute granularity

is a model limitation and strikes a
balance between computational cost
and model accuracy. Future work may
address computational bottlenecks
and increase the granularity of price
updates.

We first describe how we model the crvUSD system itself, meaning its various smart contracts.
We then describe how we generate the inputs to each simulation (such as prices) and how we
encode agent behaviors. A simplified model architecture is shown in Fig. 9.

3.1 Modeling crvUSD’s Smart Contracts

To model crvUSD’s smart contracts we use two Python packages developed by the Curve Re-
search subDAO: curvesim and crvUSDsim. Both packages provide convenient Python classes
for interacting with any Curve smart contract. For example, we may simulate exactly how an
arbitrageur’s trade will affect simulated crvUSD prices by simulating the underlying LLAMMA
pool itself.
All modules are instantiated using on-chain data from Curve’s subgraphs. As we will see, we
then randomize and resample some of this data to eliminate any recency bias and widen the
scope of our model.
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3.2 Model Inputs

3.2.1 Prices

The primary independent variable to most financial simulations is asset prices. We simulate
collateral prices using Geometric Brownian Motion (GBM) processes, and we simulate stable-
coin prices using tailored mean-reverting Ornstein-Uhlenbeck stochastic processes.
In addition, we incorporate a technique known as Cholesky decomposition to simulate cor-
related asset prices. This is critical to modeling risk for crvUSD, whose collateral prices are
either explicitly pegged to one another (as is the case with WETH, wstETH, and sfrxETH) or are
highly correlated (WETH, WBTC).
Finally, we also consider a number of scenarios where we apply “jumps” to simulated prices.
Jumps are sudden extreme movements in market prices, which are helpful in simulating mo-
ments of extreme price volatility, such as “Flash Crashes” or stablecoin depegs13. 13A model that combines jumps and

a diffusion process (such as GBMs
or OUs) is termed a Merton Jump-
Diffusion Model.All generative parameters for these processes, including GBM drifts and volatilities, OU mean-

reversion speeds, and Jump sizes are approximated from empirical data over the last three
years. These parameters are tabulated in §4. An example of simulated prices (without jumps)
is shown in Fig. 4. Some of our analysis on asset prices is displayed in this Jupyter notebook.

Figure 4: Snapshot of simulated prices for a zero-drift, severe volatility scenario. Notice how collateralassets behave as volatile Brownian motions, whereas stable assets mean-revert tightly around $1. Thestarting price for our simulations is taken from Coingecko at the time the model is run. For this particularrun on January 17th, 2024, TUSD had just dipped below $0.99, which is why we see this unexpected shapeon the TUSD panel.
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3.2.2 Debt

In our simulations, borrowers are treated as passive. This is a conservative assumption: bor-
rowers will not repay their loans proactively, increasing the burden on liquidators to keep the
system solvent. Given a simulation horizon of 24 hours, this is a reasonable assumption. For
longer time horizons, a more sophisticated borrower model may be developed. For this reason,
we do not treat borrowers as “agents” in the system, and instead treat debt distributions as an
input.
At the beginning of each simulation, we sample a random but realistic debt distribution based
on historical user data from the crvUSD Controllers. Under the hood, we leverage a simple
Gaussian Kernel Density Estimator (KDE) to sample realistic debt distributions (both in terms
of leverage and number of bands). We sequentially create new loans until a target amount of
debt has been reached for the simulation (which we vary for different scenarios). This allows us
to both control the amount of simulated debt in the system, and ensures we capture as many
realistic distributions for the specified debt as possible. The Kernel for the wstETH market is
pictured in Fig. 5.14 14More specifically, we create a Gaus-

sian KDE on the log of collateral and
debt amounts, as well as the number
of bands. As shown in Fig. 5, collat-
eral (and debt) are log-normally dis-
tributed.

Figure 5: Empirical borrower health and collateral distribution throughout Q4 2023 for the wstETHmarket taken from on-chain data. Simulated debt is sampled from the Gaussian kernel, whose densitygradient is colored in the figure. Not pictured: the distribution for the number of bands, N.

Additional investigative work may be performed to better understand why borrower healths
are so starkly concentrated between 0.03 and 0.045. Based on our preliminary analysis of this
distribution, borrower healths on all markets are concentrated within this range.

3.2.3 Internal Liquidity

When describing the risk of missed liquidations in §2 we distinguished between crvUSD liq-
uidity and collateral liquidity. We refer to internal liquidity as all liquidity contained in Curve
pools that are being explicitly simulated as described in §3.1, and includes all crvUSD liquid-
ity. This crvUSD liquidity is largely concentrated in the Peg Keeper Pools. As we will see,
crvUSD liquidity is also the primary liquidity-limiting step for liquidations, and as the ratio of
crvUSD debt to available crvUSD liquidity in the simulated Curve pools increases, the system
risks insolvency.
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We use empirical data from Q4 2023 to fix a debt to liquidity ratio in our simulations. The liq-
uidity for each pool (e.g. the amount of USDC and crvUSD deposited in the crvUSD/USDC pool)
is sampled from a multi-variate normal distribution based on empirical data. The sampled
amounts are then scaled such that the target ratio of debt to liquidity is met for the simula-
tion15. For example, if we use a 2:1 debt to liquidity ratio and we initialize a simulation with 15Most of our analysis on crvUSD debt

and liquidity is contained in these
Jupyter notebooks (1, 2).100M crvUSD debt, then we will sample the liquidity in the Peg Keeper Pools such that they

have 50M crvUSD in total deposits.
We then stress test this ratio as described in §4. The statistical data used to to analyze this ratio
is summarized in Table 3, and is illustrated in Fig. 12.

3.2.4 External Liquidity

The final input to our simulations is the amount of external liquidity available for each collateral
asset. We define this liquidity as a price impact curve f (x), where x is the input trade size.
Intuitively, f (x) is a monotonically increasing function that starts at 0 for an infinitesimally
small trade size, and increases asymptotically to 100% as trade size goes to infinity.
We define f (x) by performing a regression on historical trading data. We gather this data using
1Inch’s quotes API for each possible trading pair within the crvUSD protocol. We designed a
system that requests quotes for all trading pairs and for all reasonable trade sizes to build an
empirical slippage curve for relevant assets16. Using these quotes, we construct the curve f (x). 16Please refer to this repo for greater

details on how this is done
We perform our regression using an Isotonic Regressor, which constrains the regression prob-
lem such that the fitted trend line is non-decreasing. This ensures that f (x) is strictly non-
decreasing and bounded within [0, 1]. This regression is pictured for the USDP, WETH pair in
Fig. 7, and the raw data is shown in Fig. 6.
In Fig. 7 we can see clearly where the DEX liquidity for USDP → WETH dries up (at around 2M
USDP). Below this amount, our regression yields more reasonable price impacts in the 0 − 3%
range. This is key to modeling how much an arbitrageur or liquidator can sell of each asset,
before it becomes unprofitable to do so.17 17Refer to this Jupyter notebook for an

example on fetching the 1Inch quotes
and fitting an Isotonic Regressor to
predict price impact.

Figure 6: Historical 1Inch quotes fetched for the USDP → WETH pair. Notice how at around 2M USDP, thequoted exchange rate drops to zero, indicating that price impact is rising to 100%.
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Figure 7: Fitted regression on the price impact from the 1Inch quotes for USDP → WETH pair. Notice howat around 2M USDP, the modeled price impact rises to 100%.

3.3 Agents

The three key agents in the crvUSD protocol are the Arbitrageur, who arbitrages prices across
all Curve pools, the Liquidator, who hard-liquidates positions in all crvUSD markets, and the
Keeper, who updates all Peg Keepers.

3.3.1 Arbitrageur

Modeling liquidity-limited arbitrages is key to adequately modeling risk in the crvUSD protocol.
crvUSD relies on arbitrageurs profitably soft-liquidating borrowers by swapping collateral and
crvUSD tokens in all LLAMMAs. We simulate all possible cyclic arbitrages (of length 3) within the
crvUSD protocol, including all LLAMMAs, Peg Keeper Pools, and “external markets”. In this
case, external markets represent all external liquidity venues (including other Curve pools),
which we model using the price impact curve described in §3.2.4. We illustrate an example soft
liquidation in Fig. 8, which is a 3-step cyclic arbitrage.
The algorithm we use to simulate soft liquidations, as well as all other cyclic arbitrages, is as
follows:

1. Instantiate all LLAMMAs, Peg Keeper Pools, and external markets. There is one external
market for each pair of tokens being simulated, including collateral tokens such as WETH
and stablecoins such as USDC.

2. Identify all possible cycles of length 3 between these markets using a simple depth-first
search.

3. Each cycle defines a function f (x) where x is the amount of token going into the first
trade of the cycle, and f (x) is the amount of token coming out. Since these are cycles,
x and f (x) are in the units of the same token. In this step, we find the x that maximizes
f (x)− x for each cycle.

4. Execute the most profitable cycle if it exceeds the input profitability threshold. Notice
that profits are dollarized against market prices for comparison.

5. Repeat steps (3) and (4) until no profitable cycles remain (defined by some profitability
threshold).

At each timestep, arbitrageurs will execute the above algorithm to ensure prices are equili-
brated, as long as it is profitable to do so. We sanity-check our arbitrage algorithm by compar-
ing LLAMMA and oracle prices in our simulations and from empirical data in Fig. 3.
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Figure 8: The archetypal cyclic arbitrage we consider in our model.

3.3.2 Liquidator

Similar to arbitrages, liquidations are also assumed to be cyclic. The liquidator agent must first
purchase crvUSD from a Peg Keeper Pool (such as USDC/crvUSD), they then use this crvUSD
to repay the borrower’s loan, and finally sell the corresponding collateral in the external market
for a profit. This model for liquidations resembles flash swaps, where on the last leg of the
liquidation the liquidator swaps the collateral for the original stablecoin (e.g. USDC) to lock in
a profit18. 18Example: liquidator purchases

crvUSD using USDC, repays the loan
and receives WETH, swaps WETH for
USDC and locks in a USDC profit.Like arbitrageurs, our liquidator agents will only perform liquidations if the profit from closing

the liquidation cycle exceeds their profit threshold. This ensures that liquidations will not occur
if market prices or liquidity make it prohibitively expensive to procure the necessary crvUSD
to perform the liquidation.

3.3.3 Keeper

The simplest agent in our simulations is the Keeper. The Keeper’s task is to update the Peg
Keeper whenever doing so is profitable. This is done by calling the update function in the Peg
Keeper contract, which can only be done when such updates would result in a profitable deposit
or withdrawal of liquidity in a Peg Keeper Pool.
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Figure 9: A simple depiction of the agents in our model architecture and their relationship to crvUSD’s modules.
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4
Stress Testing

Our Agent-Based Simulations are organized by stress scenarios. Each scenario aims to investigate the
effect of different assumptions regarding asset prices, market liquidity, and outstanding debt, which in-
fluence agent behavior on the crvUSD system. We overview the several scenarios we have simulated with
our model, the motivation behind each scenario, and how the corresponding parameters were gleaned
from empirical data.

4.1 Market Stressors

We focus on three sources of market stress:
1. Price volatility: The expected variance in asset returns.
2. Debt: The amount of debt in the system at the beginning of the simulation.
3. Liquidity: The amount of crvUSD liquidity available for liquidations.

All our stress scenarios define some combination of these three stressors, generally organized
as baseline, adverse, or severe conditions for each variable.
We may additionally apply a drift or jumps to market prices, however volatility is the dominant
price term that we focus on throughout our analysis. For most scenarios, we enforce a zero-
drift condition and no jumps, although we also consider some scenarios with very negative
drift and large jumps to stress test the system.

4.1.1 Volatilities

We consider three volatility regimes gleaned from empirical data since 2020. For adverse sce-
narios we analyze BTC and ETH prices and assume that the parameters learned from these
assets approximate the volatility and drift of their derivatives: sfrxETH, wstETH, and tBTC. We
do this as there is significantly more data for BTC and ETH, and these have become less volatile
since their derivatives launched a few years ago. Our volatility configuration, shown in Table
1, is based on data from Fig. 10.

WETH wstETH sfrxETH WBTC tBTC
baseline 0.46 0.45 0.47 0.43 0.45
adverse 2.45 2.45 2.45 1.88 1.88
severe 3.67 3.67 3.67 2.82 2.82

Table 1: Annualized volatility configurations for each collateral asset for each scenario. Baseline volatilitiesare the average intraday volatility observed over the sampling period. Adverse volatilities represent thep99 intraday volatilities observed over the sampling period. Severe volatilities are 50% worse than adversevolatilities are represent extreme market turmoil.
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Figure 10: A histogram of intraday volatility for ETH and BTC since 2020. This is the standard deviation oflog returns on a rolling, 24 hour basis, and is annualized.

4.1.2 Debts

Similar to volatility, we consider the crvUSD system under three debt conditions. As the sys-
tem grows in debt, the stress on external collateral liquidity grows, increasing the probability
that liquidators are unable to profitably liquidate CDPs due to the price impact they suffer
when selling the appropriated collateral. The exact configurations we test in our simulations
is shown in Table 2, and is based on data illustrated in Fig. 11.19 19As discussed in §7, we don’t explic-

itly model the tBTC market due to pe-
culiarities with its oracle, and that it is
a fraction of the size of other markets.

Figure 11: Empirical data on the outstanding debt for each market throughout Q4 2023.

wstETH WETH WBTC sfrxETH Total (Mns)
baseline 0.33 0.07 0.20 0.20 115
adverse 0.50 0.12 0.28 0.30 170
severe 0.99 0.99 0.99 0.99 594

Table 2: The fraction of the debt ceiling being instantiated in each market is shown, as well as the totalamount of debt assuming current debt ceilings. The baseline conditions represent the average debt ceilingutilization throughout Q4 2023, whereas the adverse conditions represent the p99 utilization.
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4.1.3 Liquidities

The ratio of crvUSD debt to crvUSD liquidity in Peg Keeper Pools is relatively constant between
2:1 and 3:1. This distribution is shown in greater detail in Fig. 12. The configuration used in our
stress scenarios is shown in Table 4. We include a fourth stress condition to provide further
insight on the impact of crvUSD liquidity on the system’s risk.

Statistic Value
mean 2.36
std 0.36
min 1.55
1% 1.62
25% 2.17
50% 2.44
75% 2.61
99% 3.02
max 3.16

Table 3: Historical data on the crvUSDdebt to liquidity ratio.

Figure 12: Empirical data on the ratio of crvUSD debt vs crvUSD liquidity in Peg Keeper Pools throughoutQ4 2023. Notice that this ratio has been relatively tight between 2:1 and 3:1.

Debt:Liquidity Ratio
baseline 2.36
adverse 3.50
severe 5.00
very severe 10.00

Table 4: The ratio of crvUSD debt to liquidity used for our stress scenarios. Baseline conditions representthe average ratio, and adverse conditions are slightly above the maximum ratio observed in Q4 2023. Thesevere and very severe conditions were chosen arbitrarily.
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4.2 Scenarios

We enumerate the key scenarios used in our simulations in Table 5. Notice that we focus our
analysis on the severe volatility scenario as this is when the system is most vulnerable to ex-
treme losses and potential insolvencies. We also provide the configuration for some additional
scenarios (which include jumps and negative drifts) in §B. A key scenario not shown in Table 5
is the “depeg scenario”, which we introduce in §5.3.1.

vol debt liquidity
baseline baseline baseline baseline
adverse vol adverse baseline baseline
severe vol severe baseline baseline
adverse growth baseline adverse baseline
severe growth baseline severe baseline
adverse crvusd liquidity baseline baseline adverse
severe crvusd liquidity baseline baseline severe
very severe crvusd liquidity baseline baseline very severe
severe vol and adverse growth severe adverse baseline
severe vol and severe growth severe severe baseline
severe vol and adverse crvusd liquidity severe baseline adverse
severe vol and severe crvusd liquidity severe baseline severe
severe vol and very severe crvusd liquidity severe baseline very severe

Table 5: The key scenarios used in our simulations and their stressor configuration.

We stress that this is not an exhaustive list of stress scenarios; there are other relevant market
conditions we might want to test with our model which would help identify potential vulner-
abilities and improvements. An obvious example not discussed here is network congestion,
where Ethereum gas prices make arbitrages and liquidations unprofitable.
However, given limited time and resources, we have selected the scenarios in Table 5 as the
highest priority scenarios to simulate.
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5
Results

In this section, we present an aggregate view of simulation results. We illustrate the simulated metrics,
in particular Bad Debt, for several of the scenarios described in §4. We investigate how select parame-
ter changes may meaningfully reduce risk in the system and reduce expected borrower losses. We also
describe key sources of risk where the system begins to demonstrate potential insolvencies.

The raw data used throughout this section can be found in our GitHub repository, and results
can be viewed interactively using our dashboard.
Note: Throughout this section we refer to “baseline”, “adverse”, and “severe” conditions for volatility,
debt, and liquidity. The conditions for any of these variables is “baseline”, unless stated otherwise.
Please refer back to the tables in §4 for details on what these conditions mean. In general, “severe”
volatility implies much higher volatility than “baseline”, “severe” liquidity implies less liquidity, and
“severe“ debt implies more debt.

5.1 Protocol Solvency

The primary purpose of this risk assessment is to test whether the protocol can adequately in-
centivize liquidations, even in periods of major market stress. To that end, we ran thousands of
simulations for each of the scenarios described in §4, and used the Bad Debt metric described
in §2.2.1 to identify if and when simulated liquidators were unwilling to liquidate underwater
positions. More specifically, the Bad Debt metric tracks the maximum amount of underwater
debt observed in each simulation. We then calculate the mean, median, and p9920 amounts of 20p99 represents the 99th percentile

of measurements. The p99 metric is
critical to risk modeling. Using a p99
metric we can provide some statistical
confidence that the protocol’s bad
debt, under the simulated conditions,
will only exceed the p99 metric 1% of
the time.

bad debt observed across all stress scenarios.
Notice that the p99 value is often referred to as the Value at Risk (VaR) metric in many similar
risk models across DeFi protocols. Value at Risk approximates the worst expected outcome
for a given scenario. Since we simulate prices as stochastic processes (most of them with zero
drift), only a relatively small subset of model runs will simulate rapidly declining market prices.
These rapid declines tend to result in the bulk of simulated losses, and constitute VaR. In this
context, VaR (or p99 bad debt) should be interpreted as the worst-case daily bad debt, since
we run our simulations on a 24 hour horizon.
Recall that we run 1000 simulations per scenario, so the p99 value refers to the 10th worst
simulation per scenario.

5.1.1 Bad Debt and Volatility

Notice that bad debt increases with volatility, as expected. Furthermore, even under extreme
volatility conditions we see that the p99 bad debt is kept below 1%, meaning the worst-case bad
debt we expect over the course of a day is below 1% of the outstanding debt. Furthermore, the
majority of simulations, even under extreme volatility, observe zero bad debt.
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Volatility Bad Debt (Median) Bad Debt (Mean) Bad Debt (p99)
baseline 0.00 0.00 0.00
adverse 0.00 0.01 0.18
severe 0.00 0.04 0.88

Table 6: Bad debt as a percentage of initial debt, aggregated over all simulations for each scenario. Thethree scenarios shown in the table have varying volatility conditions for collateral tokens.

Figure 13: Bad debt for different simulated volatilities. Under a baseline volatility regime (approximately45% annualized volatility for all collateral assets), the protocol’s risk of accruing bad debt is minimal.However, as volatility climbs up to historical highs, a growing percentage of simulations end up accruingnon-negligible amounts of bad debt. Given this insight, we will focus on simulating the protocol under the
adverse and severe volatility regimes to ensure crvUSD is resilient against market stress.

5.1.2 Bad Debt and crvUSD Liquidity

Although the protocol appears resilient against extreme market volatility in Table 6 and Fig. 13,
this resiliency depends on the amount of crvUSD available to liquidators21. We run our severe 21Recall that a ratio of 5:1 implies that

20% of crvUSD debt is deposited in
the simulated Peg Keeper Pools

volatility scenario under varying ratios of crvUSD debt to crvUSD liquidity in the Peg Keeper
Pools. We plot the results in Fig. 14 and show aggregate values in Table 7.
Notice that as the ratio of debt to liquidity increases, the protocol’s Value at Risk begins to
increase past 1%. This increase in the debt : liquidity ratio may occur for several reasons, in-
cluding if the demand for crvUSD across other DeFi protocols increases. This is especially risky
if these liquidity sinks apply some kind of lock-up period to crvUSD (such as bridges or staking
pools), making the crvUSD inaccessible to liquidators.
In §6.2, we discuss how Curve can continue to incentivize crvUSD liquidity in these pools to
mitigate this risk and suggest keeping the ratio below 5:1 as a general rule of thumb. Preferably,
the protocol will maintain a ratio of at most 3:1 across all of its Curve pools, meaning approx-
imately 33% of all crvUSD is deposited on Curve. It follows that as the amount of crvUSD debt
grows, the amount of CRV incentives to these pools must grow accordingly.

Starting Debt:Liquidity Ratio Bad Debt (Median) Bad Debt (Mean) Bad Debt (p99)
2.25 0.00 0.04 0.88
3.39 0.00 0.06 1.62
4.92 0.00 0.15 2.89

10.23 0.00 0.30 8.59
Table 7: Bad debt as a percentage of initial debt, aggregated over all simulations for each scenario. Thefour scenarios shown in the table have varying ratios of crvUSD debt to crvUSD liquidity. All scenariosapply a severe volatility shock.
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Figure 14: Bad debt for different simulated liquidity ratios. A higher ratio indicates more crvUSD debt thancrvUSD liquidity available to liquidators. As we can see, at a ratio of 5:1 the bad debt metric begins toaccumulate for a small percentage of runs, and at 10:1 the risk that liquidations are not properlyincentivized is substantive. All scenarios apply a severe volatility shock.

5.1.3 Bad Debt and the Debt Ceiling

As discussed in §4.1.2, we also test the system at varying utilizations of the current debt ceil-
ing. In our baseline debt scenario we set the initial debt to the average debt ceiling utilization
observed in Q4 2023. For the adverse scenario we use the p99 historical utilization, and for
the severe scenario we set a 99% utilization. In Table 8 we show the bad debt metric for these
three scenarios under a severe volatility regime.
Notice that increasing the utilization of the debt ceiling does not meaningfully increase the risk
in the system at this scale, indicating the debt ceilings have been set conservatively.

Starting Debt (Mns) Bad Debt Pct Median Bad Debt Pct Mean Bad Debt Pct p99
107.38 0.00 0.04 0.88
159.27 0.00 0.05 0.62
558.25 0.01 0.06 0.82

Table 8: Bad debt as a percentage of initial debt under a severe volatility regime. Each scenario shows thebad debt as the starting debt in the simulation increases.

5.2 LVR and Fees

A key source of uncertainty around the crvUSD protocol is the potential losses resulting from
“soft liquidations”. As previously stated, soft liquidations are simply arbitrages against LLAMMA,
in which LLAMMA’s LPs (the borrowers) end up trading at worse-than-market price. The exact
price mechanics behind LLAMMA were illustrated in Fig. 3. However, the fees charged to the
arbitrageur accrue entirely to the borrowers, and may offset or potentially exceed these LVR
losses.
By measuring LVR - Fees, we aim to measure to what extent the LVR at each timestep is offset
by fee income. This is key to the safety of LLAMMA. If LVR routinely exceeds fee income, then soft
liquidations may slowly decrease the health of each borrower, leading to further liquidations.
Therefore, appropriately setting a fee that offsets (in expectation) a majority of LVR is critical
to minimizing unnecessary liquidations and preventing cascades.

5.2.1 Formalizing LVR and Fees

We can derive a simple condition for when fees would offset LVR, and use this as a framework
for understanding the fee parameter. Let pm be the market price for collateral/crvUSD (WLOG,
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suppose the collateral is ETH). If pm increases, then the price on LLAMMA increases faster. This
leads the arbitrageur to sell collateral (ETH) to the LLAMMA. We can calculate LVR as:

LVR := xout · pm,x − yin · pm,y, (1)

where x is crvUSD and y is the collateral, and pm,x and pm,y are market prices respectively.
Notice that this is basically dollar value out minus dollar value in. We can also define fee income
as:

Fees := f · yin · pm,y, (2)

where f is the swap fee (currently 0.006). We can identify the condition necessary for LVR to
equal fees:

xout
yin =

pm,y

pm,x
· (1 + f ), (3)

where xout
yin is the trade’s execution price p̂ and pm,y

pm,x
is the market price pm. Therefore, we have

a simple equation for comparing LVR to fees:

p̂ ?
= pm · (1 + f ). (4)

This is intuitive: as the market price pm increases, LLAMMA’s price p̂ will increase faster. The LPs
will therefore purchase collateral at a higher-than-market price, and this loss is only offset by
fees if the fee parameter matches the difference between pm and p̂. For a perfectly competitive
market, we would like to set:

f = E

[
p̂

pm

]
− 1 (5)

It follows that LVR - Fees, and therefore the optimal fee parameter, are functions of market
volatility, as well as functions of LLAMMA’s parameters (which dictate how fast p̂ rises relative
to the market).

5.2.2 Simulating LVR versus Fees

We plot the mean percentage of LVR covered by fee income in Fig. 15. Under baseline volatility
conditions and the current swap fee of 0.6%, we find that approximately 50% of LVR is covered
by fee income on average. Notice that we do not observe a linear relationship between volatility
and the percentage of LVR covered by fees. Under adverse and severe volatility conditions,
between 80% and 100% of LVR is covered by fees in our simulations.

5.2.3 Increasing the Fee Parameter

As we can see in Fig. 15, the percentage of LVR covered by fees increases linearly with the swap
fee regardless of volatility. Although this might be desirable for borrowers at a first glance,
we must also consider how increasing swap fees would affect arbitrageur behavior, and there-
fore soft liquidations. If soft liquidations do not occur, then the protocol risks debt positions
becoming under-collateralized, and therefore unprofitable to liquidate.
We experimented with fee parameters ranging in [0.005, 0.006, 0.007, 0.008, 0.009, 0.1] and mea-
sured the LVR, fee income, and bad debt across many simulations. We find that increasing the
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Figure 15: The percentage of simulated LVR covered by fees as the swap fee increases for varying volatilityconditions.

fee income consistently improves the LVR - Fee income trade-off, as expected, and introduces
no substantive increase in liquidations or bad debt for the adverse or severe volatility scenarios.
Furthermore, increasing the swap fee seems to meaningfully reduce the number of simulated
liquidations in the baseline scenario, as depicted in Fig. 16. This is intuitive: at lower volatilities
there is a minimal risk of liquidations to borrowers since prices do not tend to dip below their
liquidation price. However, this low volatility still incurs some LVR, which may sometimes
lead to liquidations. Our simulations confirm that, by increasing the swap fee and offsetting a
greater percentage of LVR, many of these liquidations no longer occur.

Figure 16: Simulated liquidations (as percentage of starting debt) for varying swap fees under baselinevolatility conditions. Notice that the fraction of runs where users are liquidated decreases as the swap feeincreases, indicating a reduction in liquidations due to LVR.

5.2.4 Active Debt

It is critical to note that the only users affected by LVR and fees are those in LLAMMA’s “active
bands” throughout each simulation. As previously described, LLAMMA is a composition of several
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smaller AMMs (like Uni v3). Borrowers whose collateral is deposited in bands far below the
simulated market prices are therefore unlikely to participate in any trades, leading to net-zero
LVR and fee income. We define the “active debt” as any debt that participated in soft liquidations
throughout a given simulation.
The percentage of debt that was “active” at any point throughout a simulation increases with
market volatility. We show these percentages for varying volatilities Table 9. Notice how only a
small fraction of debt is involved in these trades.

vol Active Debt Pct Mean Active Debt Pct Median
baseline 0.88 0.44
adverse 2.48 1.37
severe 3.92 2.47

Table 9: The percentage of simulated debt that participated in any arbitrage on LLAMMAs.

5.2.5 LVR Disclaimer

All of these simulations assume zero drift in collateral prices. They are not representative
of expected borrower returns and should not be interpreted as such. A borrower’s payoff is
largely a consequence of how they structure their loan, whether they enter soft liquidation, and
how many bands they spread their collateral over. Furthermore, borrowers are also charged
interest, and may be liquidated. We have not tracked losses from interest rates as these are
largely negligible over the course of a 24 hour simulation horizon, and our LVR metric does not
track positions once they are liquidated. The actual returns experienced by borrowers will be
a function of fees, LVR, interest rates, hard liquidations, exit prices, and more.
Furthermore, the granularity of simulations may affect the magnitude of observed LVR or fee
income, as higher granularity simulations will lead to arbitrages on smaller price swings. This
is further discussed in §7.
Optimal fee setting for AMMs is an area of active and deep research. Further analysis may
uncover better fee-setting strategies. However, the key conclusion from model results is that
the fee parameter plays a key role, not just in borrower profitability, but in the economic risks
of the crvUSD system. In a sense, the LLAMMA fee acts as the opposite of the “liquidation
incentive” described in other lending protocols. Setting too wide of a fee may prevent smooth
soft liquidations from keeping the system healthy, but setting too low of a fee may result in
unintended reductions to borrower health.

5.3 Chainlink Limits

The oracles used in the crvUSD protocol have an option to default to Chainlink Aggregator
prices if their internal EMA prices deviate from Chainlink by a preset limit22. The reasoning 22Example: Suppose that LLAMMA’s

oracle price for the WETH market is
$2500 and it has a Chainlink limit of
1%. If the Chainlink Aggregator price
for WETH/USD falls below $2475 or
above $2525, then LLAMMA’s oracle will
default to the Chainlink price instead
of using it’s oracle price of $2500.

behind this is simple: LLAMMA’s oracles apply an EMA smoothing that may sometimes become
stale if prices move very quickly in either direction. Therefore, the Chainlink limit may prevent
LLAMMA and the Controller from using outdated prices to create and manage loans.

5.3.1 The Depeg Scenario

Originally, all crvUSD oracles used a 1.5% Chainlink limit. However, existing simulations by
the Curve team have shown, using granular block-by-block data, that such a tight Chainlink
limit may result in unnecessary borrower losses and liquidations as the oracle tends to default
to Chainlink too often23. For this reason, the DAO voted to remove these limits entirely from 23Refer to this governance post.
most crvUSD markets.
However, we have identified one scenario where the Chainlink oracle limits are key to mitigat-
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ing unnecessary borrower losses and liquidations instead of causing them. To understand why
this is the case, we must first understand how these oracles work. In Fig. 2 in §2 we provided
the general schematic for a crvUSD oracle. Notice that the oracle approximates a collateral/USD
price by using USDC and USDT as proxies for the dollar.
It follows that if USDC or USDT are no longer reliable proxies for the dollar (i.e. if they lose
their peg), then the crvUSD oracles may provide incorrect prices. The exact impact of a depeg
on the LLAMMA oracle prices is not obvious: it depends on the relative liquidities between the
TriCrypto pools and the Stableswap pools, as well as on the reflexivity between USDC and
other stablecoins, and on the perceived risk of holding onto crvUSD as USDC depegs. We have
attempted to model this scenario with general arbitrage algorithms detailed in §3.3.1.
We simulate the crvUSD protocol assuming that USDC momentarily depegs by 20%, and then
mean-reverts back to $1. In all simulations for this scenario, the depeg happens exactly halfway
through the simulation horizon. In this process, we measure how far the crvUSD oracle prices
deviate from simulated collateral/USD prices. We also measure the effect the USDC depeg has
on the simulated crvUSD price (i.e. the Aggregator price) as well as the effect on borrower
losses and liquidations.

5.3.2 The Effect on Oracle Prices

In most simulations a USDC depeg causes the price of crvUSD to drop relative to other sta-
blecoins (excluding USDC). This causes the crvUSD aggregator price to drop. The simulated
crvUSD/USDC price does increase, but usually not by as much as it drops in other pools. Taken
in aggregate, this effect generally causes an increase in the simulated oracle prices for all mar-
kets, shown in Fig. 17.

Figure 17: Simulated oracle prices for a subset of model runs. We plot the oracle price assuming a 10%Chainlink limit and a 1.5% Chainlink limit. Notice that the tighted Chainlink limit prevents the simulatedoracle price from rising past $2650.

Although this sharp increase in prices may seem benign, there are situations where such a
sharp increase may result in losses as prices increase and lead to some accounts being liqui-
dated. This is discussed briefly in this help page from the Curve team. This risk is corroborated
by our risk model, which shows a flurry of liquidations at the time USDC depegs on Fig. 18.

5.3.3 Mitigating Losses with Chainlink

Our results highlight the fact that there are conditions under which the LLAMMA oracle could
report extreme price distortion due to the peg stability of USDC or USDT. This problem may
be mitigated by re-instating the Chainlink limits with wider bounds, balancing the benefits of
applying EMA smoothing to the Curve pool prices, and the dangers of aggregating collateral
prices from such a small set of price sources. We have simulated a USDC depeg under varying
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Figure 18: Simulated liquidations for the USDC depeg scenario. Colors denote the different run numbers.Notice that the depeg always occurs halfway through the simulation horizon for all runs, which coincideswith the spike in liquidations observed in the graph.

Chainlink oracle limits, from the original 1.5% to 15%. The resulting simulated liquidations and
bad debt are shown in Figures 19 and 20. Notice how the application of the Chainlink limits
meaningfully reduces simulated liquidations and simulated bad debt.

Figure 19: Simulated bad debt as a percentage of initial debt for varying Chainlink limits. Notice howsimulated bad debt increases as the Chainlink limit widens.

5.3.4 EMA Smoothing

These results highlight a trade-off between the crvUSD oracles and Chainlink. The crvUSD or-
acles provide continuous, smooth price feeds that generally minimize borrower losses. How-
ever, due to their dependence on a small set of USDC and USDT based pools, issues with either
of the stablecoins may result in drastic price swings that lead to borrower losses, liquidations,
and potential bad debt.
In §6, we suggest re-instating the Chainlink limits with a higher bound. As seen in Fig. 20, a
lot of the benefits can be gained from a 3% limit, which might provide a reasonable trade-off
between EMA smoothing and robustness against depegs. We note that our simulations are not
granular enough to fully capture the benefit of EMA smoothing on borrower losses. We discuss
this further in §7.
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Figure 20: The mean and p99 liquidated debt for varying Chainlink limits. Notice that most of the benefitfrom enforcing a limit (using a 20% depeg) is achieved only when the limit is set relatively tightly.

5.4 The Peg Keepers and Death Spirals

Another risk that arises if one of crvUSD’s paired stablecoins depegs is that its corresponding
Peg Keeper mints excessive unbacked crvUSD. This occurs because, from the Peg Keeper’s
perspective, crvUSD is becoming expensive relative to the depegging stablecoin. As previously
mentioned, the aggregated price across all other Peg Keeper Pools is the primary mechanism
that tries to prevent this.
In our simulations, approximately 1% of runs end with the USDC Peg Keeper having minted
close to its debt ceiling (25M crvUSD). In all simulations, the Peg Keeper slowly withdraws part
or all of its deposits as USDC repegs. Notice that, if USDC does not repeg, this unbacked crvUSD
may linger on in the pool indefinately, and become a source of cheap crvUSD for borrowers to
repay their debt. This is, of course, undesirable to the system and undermines the crvUSD peg.

Pk Debt Mean Pk Debt Median Pk Debt p99
Name
Baseline 12.58 12.33 19.84
Adverse depeg 13.74 12.33 36.49

Table 10: The maximum amount of crvUSD minted by the Peg Keepers throughout the simulations, inmillions. In a majority of simulations, the USDC Peg Keeper does not mint any additional crvUSD as it isconstrained by the Aggregator price. However, in approximately 1.1% of simulations, the USDC Peg
Keeper mints close to its entire debt ceiling (25M crvUSD). Notice that all simulations begin with a total PegKeeper debt of approximately 12M crvUSD, which represents the recent amount of debt in the Peg Keepercontracts when running the simulations.

In Fig. 21 we illustrate how the Peg Keeper begins to mint crvUSD as the Aggregator price
rises past 1 for a select model run. This confirms a key mechanism behind crvUSD: the Peg
Keeper can only mint excessive unbacked crvUSD if the Aggregator agrees that crvUSD is too
expensive.
Recall that the Aggregator price is a liquidity-weighted average price across all Peg Keeper
Pools. This means that the Aggregator will only believe that crvUSD is too expensive (in the
event of a USDC depeg), if the liquidity in the USDC Peg Keeper Pool outweighs the liquidity
in all other Peg Keeper Pools. As discussed in §3, we sample the relative liquidities between
the Peg Keeper Pools randomly based on historical distributions, so there are bound to be
some simulations where the initial liquidity in the USDC pool outweighs the liquidity in other
pools.
However, this is fundamentally unrealistic in the following way: we do not simulate the fact
that if USDC depegs, it is likely that a large portion of the liquidity in its Peg Keeper Pool is
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Figure 21: Top: Simulated debt for the USDC Peg Keeper as USDC depegs. Bottom: Simulated Aggregatorprice relative to the simulated USDC price. Notice that, following the USDC depeg, the aggregated pricerises past 1 in accordance with the USDC/crvUSD pool. The high USDC/crvUSD price outweighs the lowprices in other Peg Keeper Pools as it was [randomly] initialized with more liquidity in this specificsimulation.

withdrawn. Therefore, we must take these results with a grain of salt. The key insight is that,
as long as there is more combined liquidity in the non-depegging Peg Keeper Pools than in
the depegging pool, the Aggregator is likely to prevent the Peg Keeper from minting excessive
crvUSD. In that sense, the reflexivity in price between crvUSD and its paired stablecoins works
in its favor: if USDC depegs, crvUSD becomes a vehicle to exit USDC into more stable tokens like
USDT. In this process, crvUSD becomes less valuable in these other (likely more liquid) pools,
resulting in a depressed Aggregator price and therefore no excessive Peg Keeper minting.
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6
Discussion

In this section we summarize our interpretation of the results in §5. We discuss how a moderate increase
in LLAMMA’s fees may reduce unnecessary liquidations without meaningfully hampering soft liquidations,
and how re-instating the Chainlink oracle limits may make the protocol more resilient against depegs in
USDC or USDT. Finally, we stress the importance of incentivizing liquidity in the Peg Keeper Pools. We
provide a rule of thumb that at least 20% of crvUSD debt should be deposited in these pools to ensure
smooth liquidations and mitigate distortions in LLAMMA ’s oracle prices.

6.1 Potential Improvements

The suggestions below are constrained by the modeling assumptions and limitations in §7.
As we eliminate more of these limitations in future work, we may become more confident and
precise in recommending changes to the protocol’s parameters, and consider more parameters
in the process.

6.1.1 LLAMMA Fees

As discussed in §5.2, a key trade-off in designing the LLAMMA is setting a competitive swap fee.
There is a lot of literature on setting competitive swap fees, and the LVR framework referenced
throughout this report is but one framework for thinking about this problem.
We have argued that the swap fee is key in mitigating borrower losses from soft liquidations.
However, setting a high swap fee may disincentivize arbitrageurs, widening the price differ-
ence they demand before executing soft liquidations. By widening this gap, we risk positions
becoming under-collateralized before the soft liquidation is executed, which may potentially
result in bad debt to the protocol.
In our simulations, we have not identified a meaningful increase in bad debt as we increase the
swap fee, even in periods of substantive market volatility. However, we have identified a de-
crease in liquidations under baseline volatility conditions at higher swap fees, as shown in Fig.
16. The bulk of this improvement is observed as the swap fee approached 0.9%, representing a
50% increase in the current swap fee.

6.1.2 Chainlink Limits

Similar to the swap fee, the Chainlink limit parameter for LLAMMA ’s oracles also poses a key
trade-off: a tight limit reduces the system’s exposure to price distortions in the underlying
Curve pools, but increases its exposure to issues with the Chainlink oracles, and undermines
the benefit of EMA smoothing.
We have shown in §5.3 that there are certain conditions in which setting the Chainlink limit
could be beneficial to the system. In particular, a depeg in either USDC or USDT could lead
to price distortions in Curve’s pools that may result in borrower losses, liquidations, under-
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collateralized borrowing, and potential bad debt. This depeg scenario is merely one example
for why LLAMMA ’s oracles may sometimes report prices that deviate meaningfully from the
market.
In Figures 20 and 19 we plot the reduction in liquidations and bad debt (respectively) observed
by setting Chainlink limits at varying bounds. We can see that the bulk of the improvement
is only achieved with relatively tight bounds (1.5% and 3%), which unfortunately comes at the
cost of the EMA smoothing which protects borrowers from acute price swings under baseline
conditions. As we discuss in §7, our simulation granularity prevents us from capturing the
benefit of EMA smoothing on borrower losses. We hope that future versions of this model are
able to eliminate this limitation, and allow us to more closely quantify the trade-off in borrower
losses for varying Chainlink limits.

6.1.3 Measuring Impact

Insights from risk modeling rely on the fidelity of the model and accuracy of results. Although
we believe the the results represented in §5 are reliable, any parameter changes that result
from such modeling efforts should be evaluated by tracking changes to real-time metrics.

6.2 crvUSD Liquidity Incentives

A key source of risk we have modeled in the crvUSD protocol is crvUSD liquidity itself. In
Table 7, we showed that the maximum daily bad debt observed in our simulations becomes
substantive as the debt to liquidity ratio approaches 5:1. This implies that the crvUSD protocol
should ensure that at least 20% (and preferably closer to 40%) of crvUSD debt is internalized as
crvUSD liquidity in Curve’s pools.
We have made the conservative assumption that all of this liquidity is concentrated in the Peg
Keeper Pools, as these are the price sources that feed into LLAMMA’s oracles. However, some
of this liquidity is bound to be contained in other Curve pools, such as TriCRV, and would still
be accessible to liquidators. Although it is preferable to keep a significant amount of crvUSD
liquidity in the Peg Keeper Pools, the real danger to the crvUSD protocol is if a significant
amount of crvUSD liquidity is diverted to protocols where they become inaccessible to liquida-
tors. This includes any smart contract that locks up the crvUSD, including blockchain bridges,
some staking contracts, and most lending platforms24. 24As an example, consider this gov-

ernance post regarding crvUSD on
OsmosisThe primary lever the Curve community has to internalize crvUSD liquidity is the CRV gauges.

Curve’s gauge system allows CRV holders to vote on how much CRV each Curve pool emits as
incentives to LPs. The proposed gauge weights and for Febuary 2024 are shown in Table 11.

ProposedGauge Weight Proposed APYRange Annual Emissions(CRV Mn) Annual Emissions($ Mn)
Pool
USDT/crvUSD (0x390f...7BF4) 3.28 7.86% to 19.64% 5.37 2.68
USDC/crvUSD (0x4DEc...D69E) 2.70 5.49% to 13.71% 4.41 2.20
USDP/crvUSD (0xCa97...53D0) 0.55 9.05% to 22.62% 0.90 0.45
TUSD/crvUSD (0x34D6...8db0) 0.46 17.61% to 44.03% 0.75 0.37

Table 11: Proposed CRV gauge weights for February 1st, 2024 (as of January 29th, 2024). Weights are shown as a percentage of total CRV emissions that willbe directed at each of the pools. The proposed APY range shows the range of expected APYs that LPs in those pools will earn. The annual emissionscolumns assume 163.4M CRV is emitted (source), and that CRV is approximately $0.5.

It follows that a potential safety mechanism for the Curve DAO is to track the total crvUSD liq-
uidity contained across all Curve pools, and specifically in the Peg Keeper Pools. The DAO
may agree on some initial rules of thumb for how much liquidity to internalize in Curve rela-
tive to outstanding crvUSD debt. veCRV holders may then use their votes to ensure that crvUSD
pools on Curve are sufficiently incentivized to keep some crvUSD liquidity. If the debt to liq-
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uidity ratio begins to fall below 30%, then veCRV holders may vote to increase the allocation
to these pools. Further interest rate models may be developed to understand how much CRV
must be emitted to these pools.
Curve may also choose to divert a portion of the interest paid by crvUSD borrowers to fund in-
centives into the Peg Keeper Pools25. The DAO may, for example, choose to use the collected 25Thanks to Nagaking from the Curve

research team for this suggestion.interest to fund a CRV buy-back program, and use this CRV to vote for a larger share of Curve’s
gauges to be directed at the Peg Keeper Pools. Alternatively, the collected fees may be emit-
ted directly to the Peg Keeper Pools using custom gauges. Either way, part of the interest rate
revenue may be distributed to the crvUSD LPs, who are crucial in keeping the system safe.
Notice that the total revenue accrued by the crvUSD protocol since May 2023, shown in Fig. 22,
is similar to the expected dollar emissions to the Peg Keeper Pools shown in Table 11.

Figure 22: Monthly fees collected from interest charged to crvUSD borrowers based on data from thecrvUSD subgraph. Total: 4.6M USD.

6.2.1 Diversification

As we discussed in §5.4, the key mechanism that prevents a “death spiral” if one of crvUSD’s
paired stablecoins (e.g. USDC) depegs is the Aggregator price. It is crucial that the Aggregator
disagrees26 with the price reported by the depegging pool, preventing it from minting excessive 26Recall that the Peg Keeper can only

deposit unbacked crvUSD if both its
Peg Keeper Pool and the Aggregator
agree that crvUSD is too expensive.

crvUSD. In the extremes, where there is only one Peg Keeper Pool, crvUSD would be fully
exposed to depegs in the underlying stablecoin.
Currently, the vast majority of Peg Keeper liquidity is concentrated around the USDC and
USDT pools, with the TUSD and USDP pools having mostly negligible liquidities. Based on
our results, having more liquidity in a greater assortment of Peg Keeper Pools would make
crvUSD more resilient against a depeg in any one of these corresponding stablecoins. Of course,
this requires a sophisticated analysis of any new Peg Keeper Pools that might be added, or in-
creased incentives into the existing, illiquid pools (TUSD, USDP).
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7
Assumptions, Limitations, and

Future Work
Agent-Based simulations have several limitations which can ultimately be summarized by: (1) the quality
of the inputs, and (2) the flexibility of the agents. In this section, we discuss the key limitations of our
modeling approach and how they affect our results. Many of these limitations may be addressed in future
work and would serve to make simulation results more accurate.

This is a preliminary analysis of the crvUSD protocol. We do not consider an exhaustive set
of risks or scenarios that could affect the system. We have focused on what we believed are
the key sources of risk and potential improvement in the system. We list some limitations and
future work below.

7.1 Time Granularity

We run our simulations using 5-minute intervals between price updates. This makes our re-
sults more conservative since liquidators and arbitrageurs have to respond to greater price
swings than they would in actuality. Although more granular sims are higher fidelity, they are
much more computationally expensive. We tried running simulations with varying degrees of
granularity and found that simulating 5 minute intervals provided reasonable accuracy while
keeping our simulation run-times manageable using a 24 hour simulation horizon. One ob-
vious improvement to our simulation harness would be to further optimize our model and
allow us to run simulations at a minutely or even per-block granularity. The computational
bottleneck in our simulations is identifying optimal arbitrages and computing price impacts,
described in §3.3.1 and §3.2.4 respectively.
There are some mechanisms in the crvUSD protocol, particularly around EMA smoothing fac-
tors on price feeds and time delays for certain function calls, that have slightly different behav-
iors if you model smooth price swings at a high granularity versus more coarse price move-
ments at a low granularity. This has a particularly strong effect in the flash crash scenario,
where we model a major price swing over a 5 minute timestep, which realistically would be
distributed over many block-by-block updates. Our simulations in this scenario meaningfully
over-estimate the risk in the system and should be taken with a grain of salt.

7.2 Network Costs

We ran our simulations with fixed gas costs and 0 gas costs. We found that incorporating fixed
gas costs does not meaningfully change the metrics we collect from our simulations unless
we assume network congestion and very high gas prices. As an extension, incorporating vari-
able gas prices, perhaps as a function of market volatility, would improve the accuracy of our
simulation results and allow us to determine crvUSD’s risks relative to network congestion.
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7.3 Passive Borrowers

In our simulations, borrowers are passive. In a 1-day time horizon this is a reasonable, con-
servative assumption. It helps answer the question: “can the system (made up of rational ar-
bitrageurs and liquidators) smoothly clear underwater positions even if the borrower herself
does not respond to changing prices?” Of course, this means the liquidation metrics (i.e. debt
liquidated) are overestimated: in reality many borrowers would rather repay part or all of their
position than be liquidated. Prospective crvUSD borrowers should not over-index on liqui-
dation loss metrics, as these are largely concentrated on the riskiest debt positions, which
are often actively managed and, therefore, often evade liquidations during periods of market
volatility.

7.4 Passive Liquidity Providers

LPs are also passive and we use historical data to generate price impact curves. We stress test
this price impact curve in our “Growth” scenarios, which meaningfully increase the amount of
debt in the system and therefore stress tests the liquidator’s price impact. However, a possible
extension is to turn our slippage curves into multi-variate models, which consider both order
size and price volatility. Higher price volatility leads to worse price impact as LPs de-risk their
positions. Furthermore, higher price volatility may lead to simulated LP withdrawals from the
simulated Curve pools.

7.5 Exogenous Prices

Currently we model the price impact for market selling collateral in each timestep using our
Isotonic Regression models trained on historical swap quotes from 1Inch. However, we also
assume that collateral prices are exogenous to the system: although trades in our model will
incur price impact proportional to their size, this does not propagate over time. That is: a trade
at t0 that incurs 10% price impact, will not correspondingly affect the simulated price at time
t1; the price at time t1 is exclusively determined by the GBM process that generates it. A more
realistic model would incorporate this price impact in the simulated prices themselves, such
that a 10% price impact from a trade leads to a proportional change in future simulated prices.
This limitation does not apply to trades against the simulated Curve pools (LLAMMAs and Peg
Keeper Pools), since we model how those trades affect the internal state of those pools di-
rectly.

7.6 tBTC

We do not model the tBTC market due to the peculiar nature of its oracle. Unlike all other
markets, tBTC’s oracle points directly at a single TriCrypto pool with relatively little liquidity
compared to other TriCrypto pools. Unlike other markets, this pool also includes both the
collateral token (tBTC) and the debt token (crvUSD). This means liquidations (hard and soft)
may be routed directly against this pool, leading to a greater risk of deflationary price spirals.
Furthermore, this pool exhibits potential risks of price manipulation attacks, which are not
within the scope of this report.
Notice that the tBTC market represents a small portion of the crvUSD protocol (about 4%).
Future work is required to address the specific risks inherent to tBTC.
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7.7 Endogenous crvUSD Liquidity

Our model assumes that all crvUSD liquidity is concentrated in LLAMMAs and the Peg Keeper
pools. This is a conservative assumption, as it both stresses the price impact suffered by our
agents and increases the risk of cascading liquidations. Future work may incorporate other
major Curve pools that include crvUSD (such as TriCRV).
According to CoinMarketCap (as of January 2024), upwards of 80% of all crvUSD volume is
contained in the four Peg Keeper pools and so is the majority of its TVL.

7.8 Partial Liquidations

Currently, all liquidations in the model are full liquidations. Technically, the crvUSD proto-
col allows for full liquidations via the public liquidate_extended method. However, we have
found no evidence of partial liquidations when reviewing historical on-chain data. We have
made the conservative assumption that all liquidations must be performed in full, which in-
creases the burden on liquidators. This means we are not modeling the effects (positive or
negative) that partial liquidations would have on the system. In future work, support for par-
tial liquidations may be included in the model if there is evidence that such liquidations are
performed, or to understand how they would affect the system.

7.9 Future Work

Our risk model may be used to better understand and improve the crvUSD protocol. One ex-
ample for how it might be used is in onboarding new markets. Our model enables a researcher
to understand the impact of adding new collateral types on the protocol’s risk and optimize
parameters.
The model may also be used to investigate the impact of changing the underlying mechanisms
in the protocol’s smart contracts. We use the crvusdsim and curvesim Python packages to
simulate the underlying Curve pools, which may be easily modified to consider new imple-
mentations, such as new Peg Keepers or new Oracles. A modeler may then be able to quantify
the impact of changing the underlying code, and use it to decide whether or not the contracts
should be updated.
In terms of model improvements, our primary concern is to reduce the computational com-
plexity of the model so it can handle simulations at higher granularities. Ideally, the model
should be able to handle block-by-block updates for a one day horizon, without making it un-
tenable to run thousands of simulations. Further improvements include modeling network
congestion (i.e., varying gas costs) and incorporating “sticky” liquidity for collateral tokens,
meaning that trades against external markets at time ti will affect simulated prices at times
t > ti .
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B
Additional Scenarios

We also tested a few scenarios with varying jump sizes and negative drifts. We found little to no risk in the system exhibited by applying
a negative drift compared to extreme asset volatility. For this reason, we focus on the high volatility scenarios. We found meaningful risk
in the system by applying large negative jumps to collateral prices (referred to as “flash crashes”). However, as we discuss in §7, this is
likely due to a limitation in our model than actual systemic risk. The depeg scenario will be key in our analysis in the following section.
These scenarios are shown in Table 12.

vol debt liquidity mu jump
adverse drift baseline baseline baseline severe baseline
severe drift baseline baseline baseline severe baseline
adverse flash crash baseline baseline baseline baseline adverse
severe flash crash baseline baseline baseline baseline severe
adverse depeg baseline baseline baseline baseline adverse
severe vol and adverse drift severe baseline baseline severe baseline
severe vol and severe drift severe baseline baseline severe baseline
adverse flash crash and adverse growth baseline adverse baseline baseline adverse
adverse flash crash and severe growth baseline severe baseline baseline adverse
adverse flash crash and adverse crvusd liquidity baseline baseline adverse baseline adverse
adverse flash crash and severe crvusd liquidity baseline baseline severe baseline adverse

Table 12: Additional scenarios used in our simulations and their stressor configuration.

The adverse and severe drifts are computed using the same methodology as done for asset volatilities, discussed in §4.1.1. The adverse
and severe jump sizes are computed as follows for the flash crash scenarios:

1. Compute the standard deviation of log returns in your sampling period.
2. Filter out all log returns below N standard deviations.
3. Compute the mean log returns of the remaining samples.

In our case, we consider only negative jumps to calculate jump sizes, and we use N = 4 for our adverse scenario and N = 10 for our
severe scenario. In either case, the probability of a jump occuring is 1 halfway through the simulation, and zero elsewhere. This means
we enforce a single large jump. Similarly, we enforce a 20% depeg for the adverse depeg scenario.
Results for these additional scenarios may be viewed alongside other results in our GitHub repository or using our dashboard.
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